Analysis of protein modifications is critical for quality control of therapeutic biologics. However, the identification and quantification of naturally occurring glycation of membrane proteins by mass spectrometry remain technically challenging. We used highly sensitive LC MS/MS analyses combined with multiple enzyme digestions to determine low abundance early-stage lysine glycation products of influenza vaccines derived from embryonated chicken eggs and cultured cells.
View Article and Find Full Text PDFShiga toxin-producing (STEC) is one of the leading causes of foodborne illnesses in North America and can lead to severe symptoms, with increased fatality risk for young children. While O157:H7 remains the dominant STEC serotype associated with foodborne outbreaks, there has been an increasing number of non-O157 STEC outbreaks in recent years. For the food industry, lytic bacteriophages offer an organic, self-limiting alternative to pathogen reduction-one that could replace or reduce the use of chemical and physical food processing methods.
View Article and Find Full Text PDFMannosidases are a diverse group of glycoside hydrolases that play crucial roles in mannose trimming of oligomannose glycans, glycoconjugates, and glycoproteins involved in numerous cellular processes, such as glycan biosynthesis and metabolism, structure regulation, cellular recognition, and cell-pathogen interactions. Exomannosidases and endomannosidases cleave specific glycosidic bonds of mannoside linkages in glycans and can be used in enzyme-based methods for sequencing of isomeric glycan structures. α1-6-mannosidase from Xanthomonas manihotis is known as a highly specific exoglycosidase that removes unbranched α1-6 linked mannose residues from oligosaccharides.
View Article and Find Full Text PDFEndoplasmic reticulum-associated degradation (ERAD) is a key cellular process for degrading misfolded proteins. It was well known that an asparagine (N)-linked glycan containing a free α1,6-mannose residue is a critical ERAD signal created by Homologous to α-mannosidase 1 (Htm1) in yeast and ER-Degradation Enhancing α-Mannosidase-like proteins (EDEMs) in mammals. An earlier study suggested that two Arabidopsis homologs of Htm1/EDEMs function redundantly in generating such a conserved N-glycan signal.
View Article and Find Full Text PDFPhosphoenolpyruvate carboxylase (PEPC) is a tightly regulated enzyme that plays a crucial anaplerotic role in central plant metabolism. Bacterial-type PEPC (BTPC) of developing castor oil seeds (COS) is highly expressed as a catalytic and regulatory subunit of a novel Class-2 PEPC heteromeric complex. Ricinus communis Ca2+-dependent protein kinase-1 (RcCDPK1) catalyzes in vivo inhibitory phosphorylation of COS BTPC at Ser451.
View Article and Find Full Text PDFGrain legumes are highly valuable plant species, as they produce seeds with high protein content. Increasing seed protein production and improving seed nutritional quality represent an agronomical challenge in order to promote plant protein consumption of a growing population. In this study, we used the genetic diversity, naturally present in Medicago truncatula, a model plant for legumes, to identify genes/loci regulating seed traits.
View Article and Find Full Text PDFCharacterization of the structural diversity of glycans by liquid chromatography-tandem mass spectrometry (LC-MS/MS) remains an analytical challenge in large-scale glycomics applications because of the presence of heterogeneous composition, ubiquitous isomers, lability of post-translational glycan modifications, and complexity of data interpretation. High-resolution separation of glycan isomers differentiating from positional, linkage, branching, and anomeric structures is often a prerequisite to ensure the comprehensive glycan identification. Here, we developed a straightforward method using self-packed capillary porous graphitic carbon (PGC) columns for nanoflow LC-MS/MS analyses of native glycans released from glycoproteins.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
June 2020
Alkali-salinity exerts severe osmotic, ionic, and high-pH stresses to plants. To understand the alkali-salinity responsive mechanisms underlying photosynthetic modulation and reactive oxygen species (ROS) homeostasis, physiological and diverse quantitative proteomics analyses of alkaligrass (Puccinellia tenuiflora) under NaCO stress were conducted. In addition, Western blot, real-time PCR, and transgenic techniques were applied to validate the proteomic results and test the functions of the NaCO-responsive proteins.
View Article and Find Full Text PDFSulfated N-glycans are biologically important structures derived from enzymatically post-glycosylational modifications of glycoproteins in many therapeutic biologics. The high-throughput analysis of sulfated N-glycomes remains a daunting technical challenge, because of negatively charged heterogeneous composition, large molecular structures, lability of sulfate attachments, and a lack of highly selective enrichment methods. Using liquid chromatography-mass spectrometry, we have analyzed the N-glycans of influenza viral hemagglutinin and neuraminidase from several subtypes of influenza vaccines, and utilized the existing resource to establish an N-glycan library consisting of 927 N-glycan structures and 387 sulfated N-glycan compositions.
View Article and Find Full Text PDFPlatelet αIIbβ3 integrin and its ligands are essential for thrombosis and hemostasis, and play key roles in myocardial infarction and stroke. Here we show that apolipoprotein A-IV (apoA-IV) can be isolated from human blood plasma using platelet β3 integrin-coated beads. Binding of apoA-IV to platelets requires activation of αIIbβ3 integrin, and the direct apoA-IV-αIIbβ3 interaction can be detected using a single-molecule Biomembrane Force Probe.
View Article and Find Full Text PDFThe purple acid phosphatase AtPAP26 plays a central role in Pi-scavenging by Pi-starved (-Pi) Arabidopsis. Mass spectrometry (MS) of AtPAP26-S1 and AtPAP26-S2 glycoforms secreted by -Pi suspension cells demonstrated that N-glycans at Asn and Asn were modified in AtPAP26-S2 to form high-mannose glycans. A 55-kDa protein that co-purified with AtPAP26-S2 was identified as a Galanthus nivalis agglutinin-related and apple domain lectin-1 (AtGAL1; At1g78850).
View Article and Find Full Text PDFHydrogen peroxide-responsive pathways in roots of alkaligrass analyzed by proteomic studies and PutGLP enhance the plant tolerance to saline-, alkali- and cadmium-induced oxidative stresses. Oxidative stress adaptation is critical for plants in response to various stress environments. The halophyte alkaligrass (Puccinellia tenuiflora) is an outstanding pasture with strong tolerance to salt and alkali stresses.
View Article and Find Full Text PDFElevated temperatures limit plant growth and reproduction and pose a growing threat to agriculture. Plant heat stress response is highly conserved and fine-tuned in multiple pathways. Spinach ( L.
View Article and Find Full Text PDFPhosphoenolpyruvate carboxylase (PEPC) is an important regulatory enzyme situated at a key branch point of central plant metabolism. Plant genomes encode several plant-type PEPC (PTPC) isozymes, along with a distantly related bacterial-type PEPC (BTPC). BTPC is expressed at high levels in developing castor oil seeds where it tightly interacts with co-expressed PTPC polypeptides to form unusual hetero-octameric Class-2 PEPC complexes that are desensitized to allosteric inhibition by L-malate.
View Article and Find Full Text PDFThe sucrose synthase (SUS) interactome of developing castor oilseeds (COS; Ricinus communis) was assessed using coimmunoprecipitation (co-IP) with anti-(COS RcSUS1)-IgG followed by proteomic analysis. A 41-kDa polypeptide (p41) that coimmunoprecipitated with RcSUS1 from COS extracts was identified as reversibly glycosylated polypeptide-1 (RcRGP1) by LC-MS/MS and anti-RcRGP1 immunoblotting. Reciprocal Far-western immunodot blotting corroborated the specific interaction between RcSUS1 and RcRGP1.
View Article and Find Full Text PDFHydrogen peroxide (H₂O₂) is one of the most abundant reactive oxygen species (ROS), which plays dual roles as a toxic byproduct of cell metabolism and a regulatory signal molecule in plant development and stress response. × is an important cultivated forest species with resistance to cold, drought, insect and disease, and also a key model plant for forest genetic engineering. In this study, H₂O₂ response in leaves was investigated using physiological and proteomics approaches.
View Article and Find Full Text PDFThe outbreak of a pandemic influenza H1N1 in 2009 required the rapid generation of high-yielding vaccines against the A/California/7/2009 virus, which were achieved by either addition or deletion of a glycosylation site in the influenza proteins hemagglutinin and neuraminidase. In this report, we have systematically evaluated the glycan composition, structural distribution and topology of glycosylation for two high-yield candidate reassortant vaccines (NIBRG-121xp and NYMC-X181A) by combining various enzymatic digestions with high performance liquid chromatography and multiple-stage mass spectrometry. Proteomic data analyses of the full-length protein sequences determined 9 N-glycosylation sites of hemagglutinin, and defined 6 N-glycosylation sites and the glycan structures of low abundance neuraminidase, which were occupied by high-mannose, hybrid and complex-type N-glycans.
View Article and Find Full Text PDFPhosphoenolpyruvate carboxylase (PEPC) is a tightly controlled cytosolic enzyme situated at a crucial branch point of central plant metabolism. In developing castor oil seeds () a novel, allosterically desensitized 910-kD Class-2 PEPC hetero-octameric complex, arises from a tight interaction between 107-kD plant-type PEPC and 118-kD bacterial-type (BTPC) subunits. The native Ca-dependent protein kinase (CDPK) responsible for in vivo inhibitory phosphorylation of Class-2 PEPC's BTPC subunit's at Ser-451 was highly purified from COS and identified as RcCDPK1 (XP_002526815) by mass spectrometry.
View Article and Find Full Text PDFAffinity purification followed by enzymatic digestion and mass spectrometry has been widely utilized for the sensitive detection of interacting proteins and protein complexes in various organisms. In plants, the method is technically challenging due to the low abundance proteins, non-specific binding and difficulties of eluting interacting proteins from antibody beads. In this report, we describe a strategy to modify antibodies by reductive methylation of lysines without affecting their binding properties, followed by on-bead digestion of bound proteins with endoproteinase Lys-C.
View Article and Find Full Text PDFThe subversion of plant cellular functions is essential for bacterial pathogens to proliferate in host plants and cause disease. Most bacterial plant pathogens employ a type III secretion system to inject type III effector (T3E) proteins inside plant cells, where they contribute to the pathogen-induced alteration of plant physiology. In this work, we found that the Ralstonia solanacearum T3E RipAY suppresses plant immune responses triggered by bacterial elicitors and by the phytohormone salicylic acid.
View Article and Find Full Text PDFN-glycosylation has a great impact on glycoprotein structure, conformation, stability, solubility, immunogenicity and enzyme activity. Structural characterization of N-glycoproteome has been challenging but can provide insights into the extent of protein folding and surface topology. We describe a highly sensitive proteomics method for large-scale identification and quantification of glycoproteins in Arabidopsis through (15) N-metabolic labeling, selective enrichment of glycopeptides, data-dependent MS/MS analysis and automated database searching.
View Article and Find Full Text PDFImported sucrose is cleaved by sucrose synthase (SUS) as a critical initial reaction in the biosynthesis of storage end-products by developing seeds. Although SUS is phosphorylated at a conserved seryl residue by an apparent CDPK (Ca-dependent protein kinase) in diverse plant tissues, the functions and mechanistic details of this process remain obscure. Thus, the native CDPK that phosphorylates RcSUS1 (Ricinus communis SUS1) at Ser in developing COS (castor oil seeds) was highly purified and identified as RcCDPK2 by MS/MS.
View Article and Find Full Text PDF