The bromodomain (BRD) represents a highly conserved structural module that provides BRD proteins with fundamental functionality in modulating protein-protein interactions involved in diverse biological processes such as chromatin-mediated gene transcription, DNA recombination, replication and repair. Consequently, dysregulation of BRD proteins has been implicated in the pathogenesis of numerous human diseases. In recent years, considerable scientific endeavors have focused on unraveling the molecular mechanisms underlying BRDs and developing inhibitors that target these domains.
View Article and Find Full Text PDFCat eye syndrome chromosome region candidate 2 (CECR2) bromodomain is a module of CECR2-containing remodeling factor (CERF), which is a chromatin remodeling complex correlating with transcriptional control and adjustment of chromatin architecture. Potent chemical probes would be beneficial to gain insights into the biochemical and pharmacological functions of CECR2 BRD. Herein, we report the discovery of a series of CECR2 BRD inhibitors with 7H-pyrrolo[2,3-d] pyrimidine scaffold based on molecular docking model of TP-248 and CECR2 BRD.
View Article and Find Full Text PDFHistone acetylation is one of the most essential parts of epigenetic modification, mediating a variety of complex biological functions. In these procedure, p300/CBP could catalyze the acetylation of lysine 27 on histone 3 (H3K27ac), and had been reported to mediate tumorigenesis and development in a variety of tumors by enhancing chromatin transcription activity. Ovarian cancer, as an extremely malignant tumor, has also been observed to undergo abnormal acetylation of histones.
View Article and Find Full Text PDF