We report the ferromagnetism in a new bulk form Cu-based magnetic semiconductor (La,Ba)(Cu,Mn)SO, which is iso-structural to the prototypical iron-based 1111-type superconductor LaFeAsO. Starting from the parent compound LaCuSO, carriers are introduced via the substitutions of La for Ba while spins are introduced via the substitutions of Cu for Mn. Spins are mediated by carriers, which develops into the long range ferromagnetic ordering.
View Article and Find Full Text PDFIron-chalcogenide superconductors FeSeS possess unique electronic properties such as nonmagnetic nematic order and its quantum critical point. The nature of superconductivity with such nematicity is important for understanding the mechanism of unconventional superconductivity. A recent theory suggested the possible emergence of a fundamentally new class of superconductivity with the so-called Bogoliubov Fermi surfaces (BFSs) in this system.
View Article and Find Full Text PDFWe report the effect of chemical pressure on the ferromagnetic ordering of the recently reported n-type diluted magnetic semiconductor Ba(Zn[Formula: see text]Co[Formula: see text])[Formula: see text]As[Formula: see text] which has a maximum [Formula: see text] [Formula: see text] 45 K. Doping Sb into As-site and Sr into Ba-site induces negative and positive chemical pressure, respectively. While conserving the tetragonal crystal structure and n-type carriers, the unit cell volume shrink by [Formula: see text] 0.
View Article and Find Full Text PDFWe report the synthesis and characterization of a bulk form diluted magnetic semiconductor, (La(1-x)Ca(x))(Zn(1-y) Mn(y))AsO, with a layered crystal structure isostructural to that of the 1 1 1 1 type Fe-based high-temperature superconductor LaFeAsO and the antiferromagnetic LaMnAsO. With Ca and Mn codoping into LaZnAsO, the ferromagnetic ordering occurs below the Curie temperature T(c) ∼30 K. Taking advantage of the decoupled charge and spin doping, we investigate the influence of carrier concentration on the ferromagnetic ordering state.
View Article and Find Full Text PDF