Organs and tissues must change shape in precise ways during embryonic development to execute their functions. Multiple mechanisms including biochemical signaling pathways and biophysical forces help drive these morphology changes, but it has been difficult to tease apart their contributions, especially from tissue-scale dynamic forces that are typically ignored. We use a combination of mathematical models and experiments to study a simple organ in the zebrafish embryo called Kupffer's vesicle.
View Article and Find Full Text PDFCellular proliferation is vital for tissue development, including the Left-Right Organizer (LRO), a transient organ critical for establishing the vertebrate LR body plan. This study investigates cell redistribution and the role of specific progenitor cells in LRO formation, focusing on cell lineage and behavior. Using zebrafish as a model, we mapped all mitotic events in Kupffer's Vesicle (KV), revealing an FGF-dependent, anteriorly enriched mitotic pattern.
View Article and Find Full Text PDFThe effects of atmospheric aging on single-particle nascent sea spray aerosol (nSSA) physicochemical properties, such as morphology, composition, phase state, and water uptake, are important to understanding their impacts on the Earth's climate. The present study investigates these properties by focusing on the aged SSA (size range of 0.1-0.
View Article and Find Full Text PDFPolo-like-kinase (PLK) 1 activity is associated with maintaining the functional and physical properties of the centrosome's pericentriolar matrix (PCM). In this study, we use a multimodal approach of human cells (HeLa), zebrafish embryos, and phylogenic analysis to test the role of a PLK1 binding protein, cenexin, in regulating the PCM. Our studies identify that cenexin is required for tempering microtubule nucleation by maintaining PCM cohesion in a PLK1-dependent manner.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2022
Based on the characteristics of charge reversal around the isoelectric point (pI) of amphoteric starch-containing anionic and cationic groups, amphoteric cassava starch nanoparticles (CA-CANPs) are prepared by a W/O microemulsion crosslinking method using (3-chloro-2-hydroxypropyl) trimethyl ammonium chloride as a cationic reagent and POCl as an anionic reagent, and the effects of preparation conditions on the particle size of the CA-CANPs are studied in detail in the present study. CA-CANPs with a smooth surface and an average diameter of 252 nm are successfully prepared at the following optimised conditions: a crosslinking agent amount of 15 %, an aqueous starch concentration of 6.0 %, an oil-water ratio of 10:1, a total surfactant amount of 0.
View Article and Find Full Text PDFA key regulator of collective cell migrations, which drive development and cancer metastasis, is substrate stiffness. Increased substrate stiffness promotes migration and is controlled by Myosin. Using border cell migration as a model of collective cell migration, we identify, for the first time, that the actin bundling protein Fascin limits Myosin activity in vivo.
View Article and Find Full Text PDFTo elucidate the intricate role that the sea surface microlayer (SML) and sea spray aerosols (SSAs) play in climate, understanding the chemical complexity of the SML and how it affects the physical-chemical properties of the microlayer and SSA are important to investigate. While the surface tension of the SML has been studied previously using conventional experimental tools, accurate measurements must be localized to the thickness of the air-liquid interface of the SML. Here we explore the atomic force microscopy (AFM) capabilities to quantify the surface tension of aqueous solution droplets with (sub)micrometer indentation depths into the interface.
View Article and Find Full Text PDF