Glioblastoma-associated macrophages & microglia (GAMs) are critical immune cells within the glioblastoma (GBM) microenvironment. Their phagocytosis of GBM cells is crucial for initiating both innate and adaptive immune responses. GBM cells evade this immune attack by upregulating the anti-phagocytic molecule CD47 on their surface.
View Article and Find Full Text PDFBackground And Purpose: Neurodevelopmental disorders (NDDs) are characterized by abnormalities in brain development and neurobehaviors, including autism. The maternal-fetal interface (MFI) is a highly specialized tissue through which maternal factors affect fetal brain development. However, limited research exists on restoring and maintaining MFI homeostasis and its potential impact on NDDs.
View Article and Find Full Text PDFBackground And Purpose: The pathophysiological features of acute ischemic stroke (AIS) often involve dysfunction of the blood-brain barrier (BBB), characterized by the degradation of tight junction proteins (Tjs) leading to increased permeability. This dysfunction can exacerbate cerebral injury and contribute to severe complications. The permeability of the BBB fluctuates during different stages of AIS and is influenced by various factors.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative illness characterized by intracellular tau-phosphorylation, β-amyloid (Aβ) plaques accumulation, neuroinflammation, and impaired behavioral ability. Owing to the lack of effective brain delivery approaches and the presence of the blood-brain barrier (BBB), current AD therapeutic endeavors are severely limited. Herein, a multifunctional delivery system (RVG-DDQ/PDP@siBACE1) is elaborately combined with a protein kinase B (AKT) agonist (SC79) for facilitating RVG-DDQ/PDP@siBACE1 to target and penetrate BBB, enter brain parenchyma, and further accumulate in AD brain lesion.
View Article and Find Full Text PDFBackground: Despite being a common malignant tumor, the molecular mechanism underlying the initiation and progression of triple-negative breast cancers (TNBCs) remain unclear. Tumor-associated macrophages (TAMs) are often polarized into a pro-tumor phenotype and are associated with a poor prognosis of TNBCs. Exosomes, important mediators of cell-cell communication, can be actively secreted by donor cells to reprogram recipient cells.
View Article and Find Full Text PDFAcidosis is a hallmark of the tumor microenvironment caused by the metabolic switch from glucose oxidative phosphorylation to glycolysis. It has been associated with tumor growth and progression; however, the precise mechanism governing how acidosis promotes metastatic dissemination has yet to be elucidated. In the present study, a long‑term acidosis model was established using patient‑derived lung cancer cells, to identify critical components of metastatic colonization via transcriptome profiling combined with both and functional assays, and association analysis using clinical samples.
View Article and Find Full Text PDFIschemic stroke is characterized by high morbidity, disability, and mortality. Unfortunately, the only FDA-approved pharmacological thrombolytic, alteplase, has a narrow therapeutic window of only 4.5 h.
View Article and Find Full Text PDFMicroglia play an important role in neuroinflammation and neurodegeneration. Here, we report an approach for generating microglia-containing cerebral organoids derived from human pluripotent stem cells involving the supplementation of growth factors (FGF, EGF, heparin) and 10% CO2 culture conditions. Using this platform, Western Pacific Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS-PDC) cerebral organoids were generated from patient-derived induced pluripotent stem cells (iPSCs).
View Article and Find Full Text PDFPre-cooked adzuki beans (), which looks like dried adzuki bean, is easily cooked and preserved. This study aimed to optimize the microwave pre-cooked conditions on adzuki beans by applying the response surface methodology. The results showed that soaking time has a significant effect on the gelatinization degree of adzuki beans according to microwave time.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) are widely used in medical and commercial products for their unique antibacterial functions. However, the impact of AgNPs on human neural development is not well understood. To investigate the effect of AgNPs on human neural development, various doses of 20 nm citrate-coated AgNP (AgSC) were administered to human embryonic stem cell derived neural progenitors during the neuronal differentiation.
View Article and Find Full Text PDFDiabetic foot ulcer, one of the most common diabetic complications, is a progressive wound occurred on the skin with irregularly delayed wound healing rate due to impaired metabolism and weak immune responses. Such chronic wound remains a serious healthcare burden to the diabetics since it is often associated with high risk of limb loss due to amputation and leads to a reduced survival consequently. To improve the efficiency of diabetic wound healing, a synthetic chitosan-based composite hydrogel named SNPCHG incorporating silver ions (Ag) and nanoparticle-encapsulated epidermal growth factor (EGF) was developed in this study.
View Article and Find Full Text PDFPoly(A) tail length (PAL) has been implicated in the regulation of mRNA translation activities. However, the extent of such regulation at the transcriptome level is less understood in plants. Herein, we report the development and optimization of a large-scale sequencing technique called the Assay for PAL-sequencing (APAL-seq).
View Article and Find Full Text PDFBisphenol-A (BPA) is a lipophilic, organic, synthetic compound that has been used as an additive in polycarbonate plastics manufacturing since 1957. Studies have shown that BPA interferes with the development and functions of the brain, but little is known about the effects of BPA on human glutamatergic neurons (hGNs) at the molecular and cellular levels. We investigated the impact of chronic exposure to BPA to hGNs derived from human embryonic stem cells (hESCs).
View Article and Find Full Text PDFAlternative polyadenylation (APA) has been discovered to play regulatory roles in the development of many cancer cells through preferential addition of a poly(A) tail at specific sites of pre-mRNA. A recent study found that APA was involved in the mediation of acute myeloid leukaemia (AML). However, unlike gene expression heterogeneity, little attention has been directed toward variations in single-cell APA for different cell types during AML development.
View Article and Find Full Text PDFMethods Mol Biol
June 2019
Stem cells are undifferentiated biological cells that can differentiate into all lineages under defined control condition. Stem cell neuronal differentiation can faithfully recapitulate stages of neural development and generate neuronal progenitors, mature neurons, and glial cells. Stem cell technology will largely allow for the replacement of animal studies and reduce costs, and will provide a new paradigm for in toxic genomics, bioinformatics, systems biology, and epigenetics studies.
View Article and Find Full Text PDFJ Food Sci Technol
September 2018
The aims of this study were to observe the antimicrobial effect and mechanism of cinnamon oil combined with gamma radiation on Gamma radiation increased the antimicrobial activity of cinnamon oil, and the relative radiation sensitivity of gamma radiation on was increased by cinnamon oil. Gamma radiation significantly increased the changes of bacterial morphology, intra-adenosine 5'-triphosphate (intra-ATP) and extra-ATP concentrations and pH value of treated cinnamon oil. Although, gamma radiation used alone didn't damage the bacterial morphology and ATP concentrations significantly.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) are among the most extensively used nanoparticles and are found in a variety of products. This ubiquity leads to inevitable exposure to these particles in everyday life. However, the effects of AgNPs on neuron and astrocyte networks are still largely unknown.
View Article and Find Full Text PDFBackground: Cigarette butts are the most common form of litter in the world, and approximately 4.5 trillion smoked cigarettes are discarded every year worldwide. Cigarette butts contain over 4000 chemicals, many of which are known to have neurotoxic effects.
View Article and Find Full Text PDFStem cell-based neuronal differentiation has provided a unique opportunity for disease modeling and regenerative medicine. We have reported a novel culture condition and method for generating neuronal progenitors and neural networks from human embryonic and induced pluripotent stem cells without any genetic manipulation. Neurospheres generated under 10% CO with Supplemented Knockout Serum Replacement Medium (SKSRM) had doubled the expression of NESTIN, PAX6 and FOXG1 genes compared to the neurospheres generated under 5% CO.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) are used extensively as anti-microbial agents in various products, but little is known about their potential neurotoxic effects. In this study, we used glutamatergic neurons derived from human embryonic stem cells as a cellular model to study 20nm citrate-coated AgNPs (AgSCs) and Polyvinylpyrrolidone-coated AgNPs (AgSPs) induced neurotoxicity. AgSCs significantly damaged neurite outgrowths; increased the production of reactive oxygen species and Ca influxes; reduced the expression of MAP2, PSD95, vGlut1 and NMDA receptor proteins at concentrations as low as 0.
View Article and Find Full Text PDFStem cell-based neuronal differentiation has provided a unique opportunity for disease modeling and regenerative medicine. Neurospheres are the most commonly used neuroprogenitors for neuronal differentiation, but they often clump in culture, which has always represented a challenge for neurodifferentiation. In this study, we report a novel method and defined culture conditions for generating sub-type or region-specific neurons from human embryonic and induced pluripotent stem cells derived neurosphere without any genetic manipulation.
View Article and Find Full Text PDFCardiomyocytes derived from human pluripotent stem cells (PSCs) are a potential cell source for regenerative medicine, disease modelling and drug development. However, current approaches for in vitro cardiac differentiation of human PSCs are often time-consuming, heavily depend on expensive growth factors and involve the tedious formation of embryonic bodies whose signalling pathways are difficult to precisely modulate due to their complex microenvironments. In the present study, we report a new small molecule-based differentiation approach, which significantly promoted contracting cardiomyocytes in human PSCs in a monolayer format in as little as 7 days, in contrast with most traditional differentiation methods that usually take up to 3 weeks for cardiomyogenesis.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) are gaining rapid popularity in many commonly used medical and commercial products for their unique anti-bacterial properties. The molecular mechanisms of effects of AgNPs on stem cell self-renewal and proliferation have not yet been well understood. The aim of the work is to use mouse embryonic stem cells (mESCs) as a cellular model to evaluate the toxicity of AgNPs.
View Article and Find Full Text PDFWe report the synthesis and characterisation of mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes, which were used as potential photodynamic therapeutic agents for melanoma cell growth inhibition. The novel complexes, [Ru(pbt)2(phen2DTT)](PF6)2·1.5H2O 1 (where phen2DTT = 1,4-bis(1,10-phenanthrolin-5-ylsulfanyl)butane-2,3-diol and pbt = 2-(2'-pyridyl)benzothiazole) and [Ru(pbt)2(tpphz)](PF6)2·3H2O 2 (where tpphz = tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine) were synthesised and characterised.
View Article and Find Full Text PDF