Oligonucleotide drugs are shining in clinical therapeutics, but efficient and safe delivery systems severely limit their widespread use. A disulfide unit technology platform based on dynamic thiol exchange chemistry at the cell membrane has the potential for drug delivery. However, the alteration of the disulfide unit CSSC dihedral angle induced by different substituents directly affects the effectiveness of this technology and its stability.
View Article and Find Full Text PDFTo achieve high power conversion efficiency in perovskite/silicon tandem solar cells, it is necessary to develop a promising wide-bandgap perovskite absorber and processing techniques in relevance. To date, the performance of devices based on wide-bandgap perovskite is still limited mainly by carrier recombination at their electron extraction interface. Here, we demonstrate assembling a binary two-dimensional perovskite by both alternating-cation-interlayer phase and Ruddlesden-Popper phase to passivate perovskite/C interface.
View Article and Find Full Text PDFWide-bandgap (WBG) absorbers in tandem configurations suffer from poor crystallinity and weak texture, which leads to severe mixed halide-cation ion migration and phase segregation during practical operation. We control WBG film growth insensitive to compositions by nucleating the 3C phase before any formation of bromine-rich aggregates and 2H phases. The resultant WBG absorbers show improved crystallinity and strong texture with suppressed nonradiative recombination and enhanced resistance to various aging stresses.
View Article and Find Full Text PDFInterferon (IFN) alpha/beta receptor 1 (IFNAR1) is indispensable for antiviral responses and the immune regulation. Dysregulation of the IFNAR1-mediaetd signaling pathways leads to deleterious autoimmune diseases such as systemic lupus erythematosus (SLE). QX006N, a humanized therapeutic monoclonal antibody, specifically targets human IFNAR1 and is in the clinical trial phase for treating SLE, but the molecular mechanism underlying the QX006N-mediated recognition of IFNAR1 remains unclear.
View Article and Find Full Text PDFMulberry leaf ( L.) is used as a traditional medicine and potential health food to treat various metabolic diseases, such as hypertension, diabetes, and hyperlipidemia. However, we sought the mechanisms by which functional components of mulberry leaves mediate diabetic steatohepatitis.
View Article and Find Full Text PDFExtra-proliferation and increased migration of vascular smooth cells con-tribute to the formation of atherosclerosis. Ras small G proteins play a critical role in the prolif-eration and migration of a wide range of cells. Mulberry, an economic fruit in Asia, exhibits anti-inflammation, anti-migration, and anti-oxidant properties.
View Article and Find Full Text PDFInt J Environ Res Public Health
August 2022
Periodontitis (PD) is a common oral disease associated with various other diseases, particularly those affecting the cardiovascular system. This study explored whether peripheral artery occlusive disease (PAOD) is associated with PD and dental scaling. This study was a retrospective cohort study design from 2000 to 2018.
View Article and Find Full Text PDFThe aim of the current study was to evaluate the combined effect of the single nucleotide polymorphism (SNP) in long non-coding RNA growth arrest-specific 5 (GAS5) and the phenotypes of epidermal growth factor receptor (EGFR) on the clinicopathological characteristics of lung adenocarcinoma. The present study examined the relationship between the single-nucleotide polymorphisms (SNPs; rs145204276 Ins/Del, rs55829688 T/C) and the clinicopathological factors in 539 lung adenocarcinoma patients with or without EGFR mutations. We found that the genotype distributions of the two SNPs between different EGFR genotypes were similar after adjusting for age, gender and smoking history.
View Article and Find Full Text PDFMulberry leaf ( L.) has been used as a health food and in traditional medicine to treat several metabolic diseases, including diabetes, hypertension, and hyperlipidemia. However, the mechanism by which mulberry leaf and its functional components mediate atherosclerosis remains unclear.
View Article and Find Full Text PDFOwing to rapid development in their efficiency and stability, perovskite solar cells are at the forefront of emerging photovoltaic technologies. State-of-the-art cells exhibit voltage losses approaching the theoretical minimum and near-unity internal quantum efficiency, but conversion efficiencies are limited by the fill factor (<83%, below the Shockley-Queisser limit of approximately 90%). This limitation results from non-ideal charge transport between the perovskite absorber and the cell's electrodes.
View Article and Find Full Text PDFProtein Expr Purif
November 2021
Interleukin-17A (IL-17A) produced by Th17 cells, contributes to the pathogenesis of various autoimmune diseases by stimulating the release of cytokines and chemokines and its regulation. Anti-IL-17A antibody which blocks the function of IL-17A has been proved to be an effective treatment of autoimmune disease. The aim of our study was to generate a potential humanized anti-IL-17A therapeutic monoclonal antibody (mAb) through a comprehensive panel of in vitro and in vivo biological activity studies, as well as physicochemical characterization.
View Article and Find Full Text PDFPolymer passivation layers can improve the open-circuit voltage of perovskite solar cells when inserted at the perovskite-charge transport layer interfaces. Unfortunately, many such layers are poor conductors, leading to a trade-off between passivation quality (voltage) and series resistance (fill factor, FF). Here, we introduce a nanopatterned electron transport layer that overcomes this trade-off by modifying the spatial distribution of the passivation layer to form nanoscale localized charge transport pathways through an otherwise passivated interface, thereby providing both effective passivation and excellent charge extraction.
View Article and Find Full Text PDFDimensional engineering of perovskite solar cells has attracted significant research attention recently because of the potential to improve both device performance and stability. Here, a novel 2D passivation scheme for 3D perovskite solar cells is demonstrated using a mixed cation composition of 2D perovskite based on two different isomers of butylammonium iodide. The dual-cation 2D perovskite outperforms its single cation 2D counterparts in surface passivation quality, resulting in devices with an impressive open-circuit voltage of 1.
View Article and Find Full Text PDFNelumbo nucifera leaf water extract (NLE) attenuates high-fat diet (HFD)-induced rabbit atherosclerosis, but its mechanism of action and the relevant compounds remain unclear. Modulating the proliferation and migration of vascular smooth muscle cells (VSMCs) may be an enforceable strategy for atherosclerosis prevention. Therefore, we investigated the potential mechanisms of N.
View Article and Find Full Text PDFHigh-mobility group protein box 1 (HMGB1) is overexpressed and reported to be a prognostic factor in patients with non-small-cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) mutants play an important role in NSCLC progression. The aim of this study was to explore potential associations between genetic polymorphisms of and mutations in a cohort that included 280 patients with NSCLC, some of whom were smokers and others who never smoked.
View Article and Find Full Text PDFβ-carotene has been often used as a hydrophobic nutrient in many functional foods owning to its excellent antioxidant activity. However, the poor orally bioavailability of β-carotene limits its utilization. To overcome such limitation, a delivery system was designed for the encapsulation of β-carotene based on oil-in-water emulsion stabilized by oat protein isolate - Pleurotus ostreatus β-glucan Maillard conjugate.
View Article and Find Full Text PDFHeterojunction solar cells with transition-metal-oxide-based carrier-selective contacts have been gaining considerable research interest owing to their amenability to low-cost fabrication methods and elimination of parasitic absorption and complex semiconductor doping process. In this work, we propose tantalum oxide (Ta2O5) as a novel electron-selective contact layer for photo-generated carrier separation in InP solar cells. We confirm the electron-selective properties of Ta2O5 by investigating band energetics at the InP-Ta2O5 interface using X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFIncreasing the power conversion efficiency of silicon (Si) photovoltaics is a key enabler for continued reductions in the cost of solar electricity. Here, we describe a two-terminal perovskite/Si tandem design that increases the Si cell's output in the simplest possible manner: by placing a perovskite cell directly on top of the Si bottom cell. The advantageous omission of a conventional interlayer eliminates both optical losses and processing steps and is enabled by the low contact resistivity attainable between n-type TiO and Si, established here using atomic layer deposition.
View Article and Find Full Text PDFBackground: The Heimlich maneuver is a simple and universal resuscitative procedure that is performed to relieve foreign-body airway obstruction. We present a case of silent Stanford type A aortic dissection, a rarely reported complication of the Heimlich maneuver.
Case Report: A 67-year-old male presented to the emergency department with left-sided hemiplegia shortly after receiving a Heimlich maneuver.
The 6-minute walk test (6MWT) has been applied to assess postsurgical recovery in cardiac populations. This study mainly investigated whether the 6MWT could serve as an indicator for physical functioning in patients undergoing cardiac surgery.Participants completed the 6MWT and the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36) at baseline, discharge, and 3 months postoperatively, in order to analyze the construct validity and responsiveness of the 6MWT.
View Article and Find Full Text PDFThe solvent-engineering method is widely used to fabricate top-performing perovskite solar cells, which, however, usually exhibit inferior reproducibility. Herein, a two-stage annealing (TSA) strategy is demonstrated for processing of perovskite films, namely, annealing the intermediate phase at 60 °C for the first stage then at 100 °C for the second stage. Compared to conventional direct annealing temperature (DHA) at 100 °C, using this strategy, MAPbI films become more controllable, leading to superior film uniformity and device reproducibility with the champion device efficiency reaching 19.
View Article and Find Full Text PDFPerovskite material with a bandgap of 1.7-1.8 eV is highly desirable for the top cell in a tandem configuration with a lower bandgap bottom cell, such as a silicon cell.
View Article and Find Full Text PDF