Discoveries of above-room-temperature intrinsic ferromagnetism in two-dimensional (2D) van der Waals (vdW) materials offer a platform for studying fundamental 2D magnetism and spintronic devices, especially the recently discovered above-room-temperature 2D vdW FeGaTe (FGaT). However, the magnetic mechanism in FGaT remains elusive. Here, a detailed investigation using magnetic force microscopy on the thickness-dependent magnetic behavior of FGaT single crystals is reported.
View Article and Find Full Text PDFMagnetic skyrmions are swirl-like spin configurations that present topological properties, which have great potential as information carriers for future high-density and low-energy-consumption devices. The optimization of skyrmion-hosting materials that can be integrated with semiconductor-based circuits is the primary challenge for their industrialization. Two-dimensional van der Waals ferromagnets are emerging materials that have excellent carrier mobility and compatibility with integrated circuits, making them an ideal candidate for spintronic devices.
View Article and Find Full Text PDFArtificial two-dimensional (2D) moiré superlattices provide a platform for generating exotic quantum matter or phenomena. Here, an epitaxial heterostructure composed of bilayer Bi(111) and an FeGeTe substrate with a zero-twist angle is acquired by molecular beam epitaxy. Scanning tunneling microscopy and spectroscopy studies reveal the spatially tailored Kondo resonance and interfacial magnetism within this moiré superlattice.
View Article and Find Full Text PDFPrecise control of charge carrier type and density of two-dimensional (2D) ambipolar semiconductors is the prerequisite for their applications in next-generation integrated circuits and electronic devices. Here, by fabricating a heterointerface between a 2D ambipolar semiconductor (hydrogenated germanene, GeH) and a ferroelectric substrate (PbMgNbO-PbTiO, PMN-PT), fine-tuning of charge carrier type and density of GeH is achieved. Due to ambipolar properties, proper band gap, and high carrier mobility of GeH, by applying the opposite local bias (±8 V), a lateral polarization in GeH is constructed with a change of work function by 0.
View Article and Find Full Text PDFThe emergence of superconductivity in two-dimensional (2D) materials has attracted tremendous research efforts because the origins and mechanisms behind the unexpected and fascinating superconducting phenomena remain unclear. In particular, the superconductivity can survive in 2D systems even with weakened disorder and broken spatial inversion symmetry. Here, structural and superconducting transitions of 2D van der Waals (vdW) hydrogenated germanene (GeH) are observed under compression and decompression processes.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2021
Heterostructures of two-dimensional (2D) layered materials with selective compositions play an important role in creating novel functionalities. Effective interface coupling between 2D ferromagnet and electronic materials would enable the generation of exotic physical phenomena caused by intrinsic symmetry breaking and proximity effect at interfaces. Here, epitaxial growth of bilayer Bi(110) on 2D ferromagnetic FeGeTe(FGT) with large magnetic anisotropy has been reported.
View Article and Find Full Text PDFUnderstanding quantum tunneling principles over two-dimensional (2D) van der Waals (vdW) ferromagnets at the atomic level is essential and complementary to the fundamental study of low-dimensional strong correlated systems and is critical for the development of magnetic tunneling devices. Here, we demonstrate a local electric-field controlled negative differential conductance (NDC) in 2D vdW ferromagnet FeGeTe (FGT) by using scanning tunneling microscopy (STM). The STM reveals that NDC shows an atomic position dependence and can be precisely modulated by altering the tunneling junction.
View Article and Find Full Text PDFHeavy Fermion (HF) states emerge in correlated quantum materials due to the intriguing interplay between localized magnetic moments and itinerant electrons but rarely appear in 3d-electron systems due to high itinerancy of d-electrons. Here, an anomalous enhancement of Kondo screening is observed at the Kondo hole of local Fe vacancies in FeGeTe which is a recently discovered 3d-HF system featuring Kondo lattice and two-dimensional itinerant ferromagnetism. An itinerant Kondo-Ising model is established to reproduce the experimental results and provides insight into the competition between Ising ferromagnetism and Kondo screening.
View Article and Find Full Text PDFAs a rising star in the family of graphene analogues, germanene shows great potential for electronic and optical device applications due to its unique structure and electronic properties. It is revealed that the hydrogen terminated germanene not only maintains a high carrier mobility similar to that of germanene, but also exhibits strong light-matter interaction with a direct band gap, exhibiting great potential for photoelectronics. In this work, few-layer germanane (GeH) nanosheets with controllable thickness are successfully synthesized by a solution-based exfoliation-centrifugation route.
View Article and Find Full Text PDF