The Li/H cation exchange reactions occur when the cathode is exposed to water and can cause the degradation of battery performance, posing a significant challenge in the preparation of cathode aqueous electrodes. In this study, kh570 [3-(trimethoxysilyl)propyl methacrylate] is used to coat and modify the surface of LiNiCoMnO cathode particles. During the coating process, kh570 undergoes hydrolysis to generate silanol groups, which are subsequently bonded onto the surface of cathode particles and undergo self-polymerization through condensation reactions.
View Article and Find Full Text PDFHerein, we achieved reactive oxygen species manipulation using transition metal spinel ferrites (NiCoFeO, = 0, 0.5, 1) as Fenton-like agents. Specifically, NiFeO mainly produced O and high-valence metals, while CoFeO mainly produced ˙OH, from HO activation.
View Article and Find Full Text PDFAerosol particle contamination in high-power laser facilities has become a major cause of internal optical component damage resistance and service life reduction. In general, contaminating particles primarily originate from stray light; therefore, it is crucial to investigate the mechanism and dynamics of the dynamic contaminating particle generation to control the cleanliness level. In this study, corresponding research was conducted on experiments and theory.
View Article and Find Full Text PDFChina's progress in decarbonizing its transportation, particularly vehicle electrification, is notable. However, the economically effective pathways are underexplored. To find out how much cost is necessary for carbon neutrality for the light-duty vehicle (LDV) sector, this study examines twenty decarbonization pathways, combining the New Energy and Oil Consumption Credit model and the China-Fleet model.
View Article and Find Full Text PDFIncorporating plasticizers is an effective way to facilitate conduction of ions in solid polymer electrolytes (SPEs). However, this conductivity enhancement often comes at the cost of reduced mechanical properties, which can make the electrolyte membrane more difficult to process and increase safety hazards. Here, a novel crosslinking strategy, wherein metal-alkoxy-terminated polymers can be crosslinked by precisely controlling the content of H O as an initiator, is proposed.
View Article and Find Full Text PDFMetastable noble metal nanocrystals may exhibit distinctive catalytic properties to address the sluggish kinetics of many important processes, including the hydrogen evolution reaction under alkaline conditions for water-electrolysis hydrogen production. However, the exploration of metastable noble metal nanocrystals is still in its infancy and suffers from a lack of sufficient synthesis and electronic engineering strategies to fully stimulate their potential in catalysis. In this paper, we report a synthesis of metastable hexagonal Pt nanostructures by coherent growth on 3d transition metal nanocrystals such as Ni without involving galvanic replacement reaction, which expands the frontier of the phase-replication synthesis.
View Article and Find Full Text PDFHexagonal boron nitride (h-BN) is regarded as one of the most efficient catalysts for oxidative dehydrogenation of propane (ODHP) with high olefin selectivity and productivity. However, the loss of the boron component under a high concentration of water vapor and high temperature seriously hinders its further development. How to make h-BN a stable ODHP catalyst is one of the biggest scientific challenges at present.
View Article and Find Full Text PDFZeolites are among the most important heterogeneous catalysts, widely employed in separation reaction, fine chemical production, and petroleum refining. Through rational design of the frameworks, zeolites with versatile functions can be synthesized. Local imaging of zeolite structures at the atomic scale, including the basic framework atoms (Si, Al, and O) and extra-framework cations, is necessary to understand the structure-function relationship of zeolites.
View Article and Find Full Text PDFThe research on plasma chemistry involved in the formation and dissociation of abundant chemical bonds is fundamental to developing plasma cleaning. To understand the influence of reactive oxygen species' concentration and ambient temperature on the evolution behavior of the chemical bond during plasma cleaning, microscopic reaction models between organic contaminants and reactive oxygen species were established and performed by reactive molecular dynamics. Dibutyl phthalate, as a representative organic contaminant, was selected as the research object.
View Article and Find Full Text PDFElectron microscopy has been widely used in the structural analysis of proteins, pharmaceutical products, and various functional materials in the past decades. However, one fact is often overlooked that the crystal structure might be sensitive to external environments and response manners, which will bring uncertainty to the structure determination and structure-property correlation. Here, we report the atomic-level ab initio structure determinations of microcrystals by combining 3D electron diffraction (3D ED) and environmental transmission electron microscope (TEM).
View Article and Find Full Text PDFExsolution is an ingenious strategy for the construction of metal- or alloy-decorated oxides and, due to its promising energy related catalysis applications, has advanced from use in perovskites to use in spinels. Despite its great importance for designing target composites, the ability to identify whether active metal ions at octahedral or tetrahedral sites will preferentially exsolve in a spinel remains unexplored. Here, an inverse spinel NiFeO (NFO) was employed as a prototype and FeNi/NFO composites were successfully constructed exsolution.
View Article and Find Full Text PDFA new strategy was established for the degradation of wastewater-based organic pollutants. Laser-induced plasma (LIP) was used as an alternative UV light source to realise rapid photodegradation of methylene blue (MB), an organic pollutant. A conventional 1064 nm Nd:YAG laser was used for plasma excitation to degrade MB solutions.
View Article and Find Full Text PDFThe impact of airborne molecular contaminants (AMCs) on the lifetime of fused silica UV optics in high power lasers (HPLs) is a critical issue. In this work, we demonstrated the on-line monitoring method of AMCs concentration based on the Sagnac microfiber structure. In the experiment, a Sagnac microfiber loop with mesoporous silica coating was fabricated by the microheater brushing technique and dip coating.
View Article and Find Full Text PDFConstructing composite structures is an essential approach for obtaining multiple functionalities in a single entity. Available synthesis methods of the composites need to be urgently exploited; especially in situ construction. Here, a NiS/NiFe O composite through a local metal-S coordination at the interface is reported, which is derived from phase reconstruction in the highly defective matrix.
View Article and Find Full Text PDFThe rational design and controllable synthesis of hollow nanoparticles with both a mesoporous shell and an asymmetric architecture are crucially desired yet still significant challenges. In this work, a kinetics-controlled interfacial super-assembly strategy is developed, which is capable of preparing asymmetric porous and hollow carbon (APHC) nanoparticles through the precise regulation of polymerization and assembly rates of two kinds of precursors. In this method, Janus resin and silica hybrid (RSH) nanoparticles are first fabricated through the kinetics-controlled competitive nucleation and assembly of two precursors.
View Article and Find Full Text PDFStretchable optical fiber sensors (SOFSs), which are promising and ultra-sensitive next-generation sensors, have achieved prominent success in applications including health monitoring, robotics, and biological-electronic interfaces. Here, we report an ultra-sensitive multi-functional optical micro/nanofiber embedded with a flexible polydimethylsiloxane (PDMS) membrane, which is compatible with wearable optical sensors. Based on the effect of a strong evanescent field, the as-fabricated SOFS is highly sensitive to strain, achieving high sensitivity with a peak gauge factor of 450.
View Article and Find Full Text PDFHere we use low-temperature scanning tunneling microscopy and spectroscopy to reveal the roles of the narrow electronic band in two 1T-TaS_{2}-related materials (bulk 1T-TaS_{2} and 4H_{b}-TaS_{2}). 4H_{b}-TaS_{2} is a superconducting compound with alternating 1T-TaS_{2} and 1H-TaS_{2} layers, where the 1H-TaS_{2} layer has a weak charge density wave (CDW) pattern and reduces the CDW coupling between the adjacent 1T-TaS_{2} layers. In the 1T-TaS_{2} layer of 4H_{b}-TaS_{2}, we observe a narrow electronic band located near the Fermi level, and its spatial distribution is consistent with the tight-binding calculations for two-dimensional 1T-TaS_{2} layers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2020
Exfoliation of non-layered (structurally) bulk materials at the nanoscale is challenging because of the strong chemical bonds in the lattice, as opposed to the weak van der Waals (vdW) interactions in layered materials. We propose a top-down method to exfoliate ϵ-MnO nanosheets in a family of charge-ordered La AE MnO (AE=Ca, Sr, Ba) perovskites, taking advantage of the Jahn-Teller disproportionation effect of Mn and bond-strength differences. ϵ-MnO crystallized into a nickel arsenide (NiAs) structure, with a thickness of 0.
View Article and Find Full Text PDFDiabetes Metab Syndr Obes
February 2020
Background: Long noncoding RNAs (lncRNAs) can regulate the progression of DN. This research aimed to study the effect of lncRNA KCNQ1OT1 on the oxidative stress and pyroptosis of the renal tubular epithelial cells induced by high glucose (HG).
Methods: RT-qPCR analysis detected the KCNQ1OT1 expression in serum with DN and HG-induced HK-2 cells, detect the expression of NLRP3, cleaved-caspase1, P-caspase1, IL-1β, p-IL-1β and GSDMD-N in HG-induced HK-2 cells, and confirm the transfection effects.
The synthesis of intermetallic antimonides usually depends on either the high-temperature alloying technique from high-purity metals or the flux method in highly poisonous Pb-melt. In this paper, we introduced a soft-chemical method to synthesize intermetallic antimonides from ternary chalcogenide precursors under an argon atmosphere below 200 °C. Powder X-ray diffraction and compositional analysis clearly indicate that a new phase of the AgSb nanocrystal was synthesized from the AgSbS precursors.
View Article and Find Full Text PDFObjective: To evaluate the association between Chinese medicine (CM) therapy and disease-free survival (DFS) outcomes in postoperative patients with non-small cell lung cancer (NSCLC).
Methods: This multiple-center prospective cohort study was conducted in 13 medical centers in China. Patients with stage I, II, or IIIA NSCLC who had undergone radical resection and received conventional postoperative treatment according to the National Comprehensive Cancer Network (NCCN) guidelines were recruited.
The formation of laser-induced periodic surface structures (LIPSS) on two different dielectrics of K9 glass and fused silica upon irradiation in ambient conditions and in vacuum with multiple femtosecond (fs) laser pulse sequences at different pulse durations (35 fs, 260 fs, and 500 fs) was studied experimentally. Three types of LIPSS, so-called high-spatial-frequency LIPSS (HSFL), low-spatial-frequency LIPSS (LSFL), and supra-wavelength periodic surface structures (SWPSS) with different spatial periods and orientations were identified. The appearance was characterized with respect to the experimental parameters of laser fluence and number of laser pulses per spot.
View Article and Find Full Text PDFA simple and convenient means of fabricating concave microlens arrays direct on silica glass by using the local fictive temperature modification of fused silica is presented. This method is based on the fact that an increased fictive temperature results in a much higher HF acid etching rate of fused silica. Combining the abrupt local fictive temperature enhancement by the CO laser pulse and the subsequent etching by the HF acid solution, concave microlens arrays with high fill factors, excellent smoothness, and optical performance are generated on fused silica.
View Article and Find Full Text PDF