With rapid global urbanization and economic development, 3D concrete printing (3DCP) technology has emerged as an innovative construction method, garnering increasing attention and application. Compared to traditional construction techniques, 3DCP not only reduces resource waste and carbon emissions during the building process but also significantly enhances construction efficiency, demonstrating considerable potential in the construction industry. As 3DCP advances from theoretical studies to real-world applications, providing stable and reliable structural reinforcement solutions becomes essential.
View Article and Find Full Text PDFStraw biochar amended soils reduce fertilizer losses and alleviate soil K-exhaustion, while decrease grain yield due to its high pH. HSO-modified biochar has been studied as a means to enhance the advantages of biochar and address yield decrease. However, little information is available on its effects on aboveground K uptake, soil K fixation, K leaching, and utilization in paddy rice systems, especially under water stress.
View Article and Find Full Text PDFThe test of four rubber concrete filled steel tube (RuCFST) members, one concrete filled steel tube (CFST) member and one empty member were conducted under pure bending. The main parameters were the shear span ratio (λ) from 3 to 5, and the rubber replacing ratio (r) from 10% to 20%. The bending moment-strain curves, the bending moment-deflection curves and the bending moment-curvature curves were obtained.
View Article and Find Full Text PDFPlant Phenomics
March 2022
To predict grape maturity in solar greenhouses, a plant phenotype-monitoring platform (Phenofix, France) was used to obtain RGB images of grapes from expansion to maturity. Horizontal and longitudinal diameters, compactness, soluble solid content (SSC), titratable acid content, and the SSC/acid of grapes were measured and evaluated. The color values (, , , , , and ) of the grape skin were determined and subjected to a back-propagation neural network algorithm (BPNN) to predict grape maturity.
View Article and Find Full Text PDFIn recent years, whole steel frame steel greenhouses have become increasingly prevalent. With the characteristics of large flexibility and small mass, whole steel frame steel greenhouses are sensitive to wind loads. However, studies on the safety of whole steel frame steel greenhouses under wind loads are still limited.
View Article and Find Full Text PDFIn order to analyze the competitive relationship of different deformation mechanisms in wrought AZ31 magnesium alloy, the dynamic compressive experiments were conducted by a Split Hopkinson Pressure Bar (SHPB) apparatus and a resistance-heated furnace in the range of temperature between 20 and 350 °C at the strain rate of 1000 s. With the help of Electron Backscattered Diffraction (EBSD) observation, theoretical calculated Schmid Factor (SF), Critical Resolved Shear Stress (CRSS), and critical equivalent stress (σ0.2), the dynamic compressive deformation behavior and corresponding mechanism of wrought AZ31 magnesium alloy along the normal direction (ND) were revealed in the current study.
View Article and Find Full Text PDFSediment transport capacity (Tc) is an essential parameter in the establishment of the slope soil erosion model. Slope type is an important crucial factor affecting sediment transport capacity of overland flow, and vegetation can effectively inhibit soil loss. Two new formulae of sediment transport capacity (Tc) are proposed of brown soil slope and vegetation slope in this study and evaluate the influence of slope gradient (S) and flow discharge (Q) on sediment transport capacity of different slope types.
View Article and Find Full Text PDFIn order to investigate the effect of temperature on the microstructure evolution and mechanical response in the transverse direction of a wrought AZ31 (AZ31-TD) alloy under a high strain rate, the dynamic compression was conducted using Split Hopkinson Pressure Bar (SHPB) apparatus and a resistance-heated furnace under 1000 s at 20-250 °C. By combining optical and EBSD observations, the microstructure's evolution was specifically analyzed. With the help of theoretically calculated Schmid Factors (SF) and Critical Resolved Shear Stress (CRSS), the activation and development deformation mechanisms are systematically discussed in the current study.
View Article and Find Full Text PDF