HIV-1 is capable of integrating its genome into that of its host cell. We examined the influence of the activation state of CD4+ T cells, the effect of antiretroviral therapy (ART), and the clinical stage of HIV-1 infection on HIV-1 integration site features and selection. HIV-1 integration sites were sequenced from longitudinally sampled resting and activated CD4+ T cells from 12 HIV-1-infected individuals.
View Article and Find Full Text PDFBackground: The persistence of the latent HIV-1 reservoir is a major obstacle to curing HIV-1 infection. HIV-1 integrates into the cellular genome and some targeted genomic loci are frequently detected in clonally expanded latently HIV-1 infected cells, for instance, the gene .
Methods: We investigated HIV-1 promoter activity after integration into specific sites in in Jurkat T-cells.
Background: The primary hurdle for the eradication of HIV-1 is the establishment of a latent viral reservoir early after primary infection. Here, we investigated the potential influence of human genetic variation on the HIV-1 reservoir size and its decay rate during suppressive antiretroviral treatment.
Setting: Genome-wide association study and exome sequencing study to look for host genetic determinants of HIV-1 reservoir measurements in patients enrolled in the Swiss HIV Cohort Study, a nation-wide prospective observational study.
Therapies to treat patients infected with human immunodeficiency virus (HIV) aim at preventing viral replication but fail to eliminate the virus. Although transplantation of allogeneic CCR5Δ32 homozygous stem cell grafts provided a cure for a few patients, this approach is not considered a general therapeutic strategy because of potential side effects. Conversely, gene editing to disrupt the C-C chemokine receptor type 5 (CCR5) locus, which encodes the major HIV coreceptor, has shown to confer resistance to CCR5-tropic HIV strains.
View Article and Find Full Text PDFHIV and EBV are human pathogens that cause a considerable burden to worldwide health. In combination, these viruses are linked to AIDS-associated lymphomas. We found that EBV, which transforms B cells, renders them susceptible to HIV-1 infection in a CXCR4 and CD4-dependent manner in vitro and that CXCR4-tropic HIV-1 integrates into the genome of these B cells with the same molecular profile as in autologous CD4 T cells.
View Article and Find Full Text PDFThe HIV-1 reservoir is the major hurdle to a cure. We here evaluate viral and host characteristics associated with reservoir size and long-term dynamics in 1,057 individuals on suppressive antiretroviral therapy for a median of 5.4 years.
View Article and Find Full Text PDFLong-lived latently HIV-1-infected cells represent a barrier to cure. We developed a dual-fluorescence HIV-1-based vector containing a pair of genetic insulators flanking a constitutive fluorescent reporter gene to study HIV-1 latency. The protective effects of these genetic insulators are demonstrated through long-term (up to 394 days) stable fluorescence profiles in transduced SUP-T1 cells.
View Article and Find Full Text PDFObjectives: To determine the most recent prevalence, transmission patterns and risk factors of transmitted drug-resistance mutations (TDRMs) in Cameroon, we initiated a multicentre study monitoring HIV-1 drug resistance in newly HIV-1-diagnosed individuals using a novel next-generation sequencing (NGS) assay applicable to fingerprick dried blood spot (DBS) samples.
Methods: Fingerprick DBS samples and questionnaires were collected from 360 newly HIV-1-diagnosed individuals in four hospitals in urban areas in Cameroon in the years 2015-16. We developed an HIV-1 protease and reverse transcriptase drug resistance genotyping assay applicable to DBS samples and HIV-1 genomes of groups M, N and O.
Pegylated interferon-alpha (pIFN-α) is suggested to lower human immunodeficiency virus type-1 (HIV-1) DNA load in antiretroviral therapy (ART)-treated patients. We studied kinetics of HIV-1 DNA levels in 40 HIV-1/hepatitis C virus (HCV) coinfected patients, treated with pIFN-α for HCV and categorized into 3 groups according to start of ART: chronic HIV-1 infection (n = 22), acute HIV-1 infection (n = 8), no-ART (n = 10). Total HIV-1 DNA levels in 247 peripheral blood mononuclear cell samples were stable before, during, and after pIFN-α treatment in all groups.
View Article and Find Full Text PDFA single virus is capable of infecting and replicating in a single cell. Recent advances across single-cell omics technologies - genomics, epigenomics, transcriptomics, epitranscriptomics, proteomics, and metabolomics - will offer unprecedented opportunities to gain more insights into the various aspects of the life cycle of viruses and their impact on the host cell. Here, using the human immunodeficiency virus type 1 (HIV-1) as an example, we summarize the current knowledge and the future potential of single-cell omics in the investigation of an important aspect of the life cycle of HIV-1 that represents a major hurdle in achieving viral eradication, HIV-1 latency.
View Article and Find Full Text PDFThe host genetic landscape surrounding integrated HIV-1 has an impact on the fate of the provirus. Studies analysing HIV-1 integration sites in macrophages are scarce. We studied HIV-1 integration site patterns in monocyte-derived macrophages (MDMs) and activated CD4(+) T cells derived from seven antiretroviral therapy (ART)-treated HIV-1-infected individuals whose cells were infected ex vivo with autologous HIV-1 isolated during the acute phase of infection.
View Article and Find Full Text PDF