Publications by authors named "Yijun Fu"

Sacha inchi () is a valuable oilseed crop with a high content of polyunsaturated fatty acids (PUFAs). However, there is a lack of in-depth understanding of the lipidomics in Sacha inchi seeds (SIDs). Saturated fatty acids occupied more than half of the proportion (59.

View Article and Find Full Text PDF

As an important inorganic material, alumina ceramic nanofibers have attracted more and more attention because of their excellent thermal stability, high melting point, low thermal conductivity, and good chemical stability. In this paper, the preparation conditions for alumina spinning gel, such as the experimental raw materials, spin finish aid, aging time, and so on, are briefly introduced. Then, various methods for preparing the alumina ceramic nanofibers are described, such as electrospinning, solution blow spinning, centrifugal spinning, and some other preparation processes.

View Article and Find Full Text PDF

Water pollution caused by the continuous development of industrialization has always been a common concern of mankind. Herein, a novel strategy to fabricate a high-performance composite membrane based on dual-network structured nonwoven net/UHMWPE nanopores a thermal phase separation and composite technique is reported. By thermal phase separation of ultra-high-molecular weight polyethylene (UHMWPE)/liquid paraffin (LP), this approach enables 3D nanopores to tightly bond with a nonwoven net to form a dual-network structure.

View Article and Find Full Text PDF

Background: is cultivated as a valuable oilseed crop, and its mature seeds are rich in polyunsaturated fatty acids (FAs), which are widely used in food and pharmaceutical industries. Recently, next-generation sequencing (NGS) transcriptome studies in indicated that some candidate genes were involved in oil biosynthesis. The NGS were inaccuracies in assembly of some candidate genes, leading to unknown errors in date analyses.

View Article and Find Full Text PDF

As a new tumor treatment strategy, photothermal therapy (PTT) has the advantages of accuracy, ease of administration, a high efficiency and low side effects. Photothermal transduction agents (PTAs) are the key factor which play an important role in PTT. The mechanism of PTT is discussed in detail.

View Article and Find Full Text PDF

In this work, a metal-organic framework material, zeolitic imidazolate framework-90 (ZIF-90), was firstly used to encapsulate laccase (LAC) and to prepare ZIF-90/LAC biocomposites. Afterward, the composites were combined with bacterial cellulose (BC) and carboxylated multi-walled carbon nanotubes (c-MWCNTs) by a facile method to achieve a novel cellulose membrane with biocatalytic function, displaying excellent detection and degradation properties towards phenolic pollutant. Notably, the membrane was directly employed as a biosensor electrode, and it exhibited a linear response to catechol from 20 to 400 μM with a detection limit of 1.

View Article and Find Full Text PDF

This study reports a novel, multifunctional, and easily obtained modifier to support the rapid advancements in the field of filtration. Polydopamine (PDA) particles (PDAPs) have been reported as a filler for constructing polymer composites, but because of their poor thermal stability, the use of PDAPs in high-temperature blend melt systems to construct antifouling membranes was rare. In this paper, high-thermal-stability methoxy polyethylene glycol amine (mPEG-NH)-functionalized PDA nanoparticles (mPDAPs) were first used as a modifier in high-temperature blend melt polymer composites to construct antifouling composite membranes.

View Article and Find Full Text PDF

Electret filters are widely used in particulate matter filtration due to their filtration efficiency that can be greatly improved by electrostatic forces without sacrificing the air resistance. However, the attenuation of the filtration efficiency remains a challenge. In this study, we report a novel strategy for producing an electret melt blown filter with superior filtration efficiency stability through a thermally stimulated charging method.

View Article and Find Full Text PDF

Biofilms formed on skin wound lead to inflammation and a delay of healing. In the present work, a novel textile pile debridement material was prepared and treated by plasma. Samples before and after plasma treatment were characterized by a series of methods, including scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and water uptake capacity.

View Article and Find Full Text PDF

A co-based porous metal-organic framework (MOF) of zeolitic imidazolate framework-67 (ZIF-67) and carbon nanofibers (CNFs) was utilized to prepare a ZIF-67/CNFs composite via a one-pot synthesis method. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) were employed to investigate the morphology, structure, and composition of the resulting composite. A novel high-performance non-enzymatic electrochemical sensor was constructed based on the ZIF-67/CNFs composite.

View Article and Find Full Text PDF

Multifunctional carbon dots (CDs) with lifetime thermal sensing, nucleolus imaging, and antialgal activity properties were synthesized directly from ascorbic acid aqueous solution by a one-step electrochemical method at room temperature. The as-prepared CDs are responsive to temperature and exhibit an accurate linear response of fluorescence intensity vs. temperature (20-100 °C).

View Article and Find Full Text PDF

Hematite is an earth-abundant and ubiquitous semiconductor with a suitable bandgap of 2.1 eV for solar water splitting. Unfortunately, it suffers from a low conduction band position compared to the H/H potential and typically an external bias has to be applied.

View Article and Find Full Text PDF

Self-healing is the way by which nature repairs damage and prolongs the life of bio entities. A variety of practical applications require self-healing materials in general and self-healing polymers in particular. Different (complex) methods provide the rebonding of broken bonds, suppressing crack, or local damage propagation.

View Article and Find Full Text PDF

The Bentall procedure introduced in 1968 represents an undisputed cure to treat multiple pathologies involving the aortic valve and the ascending thoracic aorta. Over the years, multiple modifications have been introduced as well as a standardized approach to the operation with the goal to prevent long-term adverse events. The Gelweave Valsalva graft provides a novel manner to more efficiently reconstruct the anatomy of the aortic root either with a valve-sparing procedure or with the implantation of a valved conduit (bioprosthesis or mechanical valve).

View Article and Find Full Text PDF

Electrochemical reduction of CO is a key component of many prospective artificial technologies for renewable carbon-containing fuels, but it still suffers from the high overpotentials required to drive the process, low selectivity for diversiform products and the high cost of the catalyst. Here, we report that Cu-CDots nanocorals is a highly efficient, low-cost and stable electrocatalyst for CO reduction in aqueous solution. The major product of CO reduction on the Cu-CDots nanocorals is HCOOH with an inconceivable low overpotential of 0.

View Article and Find Full Text PDF
Article Synopsis
  • The Bentall procedure, established in 1968, effectively treats issues with the aortic valve and ascending thoracic aorta and has evolved with modifications to improve long-term outcomes.
  • The BioValsalva prosthesis enhances the Bentall operation by reconstructing the aortic valve and root anatomy using a specialized valved conduit.
  • This prosthesis consists of a collar, a skirt designed for coronary artery connections, and a main graft body, making it suitable for patients who cannot keep their original aortic valve.
View Article and Find Full Text PDF

The reconstruction of the right ventricular outflow tract (RVOT) system represents a considerable challenge for both manufacturers and surgeons because the patients requiring this type of devices have a very diverse set of anatomical challenges that can lead to complications and subsequent early device failures. We conducted an indepth investigation of a porcine-valve conduit explanted from a patient following an adverse event. A control device was analyzed as a reference.

View Article and Find Full Text PDF

Fiber shedding is a critical problem in biomedical textile debridement materials, which leads to infection and impairs wound healing. In this work, single fiber pull-out test was proposed as an evaluation for the fiber shedding property of a textile pile debridement material. Samples with different structural design (pile densities, numbers of ground yarns and coating times) were prepared and estimated under this testing method.

View Article and Find Full Text PDF

An aortoesophageal fistula following surgery for a ruptured 6.6-cm thoracic aneurysm in a 69-year-old female was repaired using a 34-mm woven prosthetic graft. A follow-up computed tomography (CT) scan at 10 days postoperatively revealed a dissection-like picture in the region of the graft, which was treated conservatively.

View Article and Find Full Text PDF