J Colloid Interface Sci
November 2021
Pressure solution of carbonate-based rocks participates in many geophysical and geochemical processes, but fundamental knowledge of the interfacial processes is still lacking. By concurrently pressing and sliding two single calcite crystals past each other, the pressure solution rate and the friction force between the crystals were concurrently measured in calcium-carbonate saturated water with an extended surface forces apparatus. These studies reveal that both a decrease and an increase in frictional strength can originate from the pressure-solution of calcite single crystals.
View Article and Find Full Text PDFUnderstanding modulation of water molecule slippage along graphene surfaces is crucial for many promising applications of two-dimensional materials. Here, we examine normal and shear forces on supported single-layer graphene using atomic force microscopy and find that the electrolyte composition affects the molecular slippage of nanometer thick films of aqueous electrolytes along the graphene surface. In light of the shear-assisted thermally activated theory, water molecules along the graphene plane are very mobile when subjected to shear.
View Article and Find Full Text PDFThe friction between two adjacent tectonic plates under shear loading may dictate seismic activities. To advance the understanding of mechanisms underlying fault strength, we investigate the frictional characteristics of calcite in an aqueous environment. By conducting single-asperity friction experiments using an atomic force microscope, here we show three pathways of energy dissipation with increasing contact stresses: viscous shear of a lubricious solution film at low normal stresses; shear-promoted thermally activated slip, similar to dry friction but influenced by the hydrated ions localized at the interface; and pressure-solution facilitated slip at sufficiently high stresses and slow sliding velocities, which leads to a prominent decrease in friction.
View Article and Find Full Text PDFRecognizing the significance of surface interactions for ion rejection and membrane fouling in nanofiltration, we revise the theories of DLVO (named after Derjaguin, Landau, Verwey, and Overbeek) and non-DLVO forces in the context of polyamide active layers. Using an atomic force microscope, surface forces between polyamide active layers and a micrometer-large and smooth silica colloid were measured in electrolyte solutions of representative monovalent and divalent ions. While the analysis of DLVO forces, accounting for surface roughness, provides how surface charge of the active layer changes with electrolyte concentration, scrutiny of non-DLVO hydration forces gives molecular insight into the composition of the membrane-solution interface.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2016
Little is known about the influence of nanoconfinement on calcium carbonate mineralization. Here, colloidal probe atomic force microscopy is used to confine the calcite-solution interface with a silica microsphere and to measure Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO forces as a function of the calcium concentration, also after charge reversal of both surfaces occurs. Through the statistical analysis of the oscillatory component of a strong hydration force, the subnanometer interfacial structure of the confined atomically flat calcite is resolved in aqueous solution.
View Article and Find Full Text PDFAb initio simulations of large hydrated calcium carbonate clusters are challenging due to the existence of multiple local energy minima. Extensive conformational searches around hydrated calcium carbonate clusters (CaCO3·nH2O for n = 1-18) were performed to find low-energy hydration structures using an efficient combination of Monte Carlo searches, density-functional tight binding (DFTB+) method, and density-functional theory (DFT) at the B3LYP level, or Møller-Plesset perturbation theory at the MP2 level. This multilevel optimization yields several low-energy structures for hydrated calcium carbonate.
View Article and Find Full Text PDF