Publications by authors named "Yijuan Du"

The aim of this study is to investigate the association between sleep quality during pregnancy and fetal growth. Pregnant women and their fetuses at 16-20 gestational weeks in Nantong Maternal and Child Health Hospital were recruited. Women were classified as having "good sleep quality" (Pittsburgh Sleep Quality Index score ≤ 5) and "poor sleep quality" (Pittsburgh Sleep Quality Index score > 5) according to the Pittsburgh Sleep Quality Index scores.

View Article and Find Full Text PDF

Methamphetamine (meth) increases monoamine oxidase (MAO)-dependent mitochondrial stress in axons of substantia nigra pars compacta (SNc), and ventral tegmental area (VTA) dopamine neurons. Chronic administration of meth results in SNc degeneration and MAO inhibition is neuroprotective, whereas, the VTA is resistant to degeneration. This differential vulnerability is attributed, at least in part, to the presence of L-type Ca channel-dependent mitochondrial stress in SNc but not VTA dopamine neurons.

View Article and Find Full Text PDF

Methamphetamine (meth) is an addictive psychostimulant and illicit use presents significant personal and socioeconomic harm. Behavioral studies support the involvement of the dorsal striatum in drug-seeking but stimulant induced dysfunction in this region is understudied. The dorsal striatum can be subdivided into the dorsomedial (DMS) and dorsolateral (DLS) striatum with the DMS implicated in goal-directed and DLS in habitual behaviors; both regions are primarily composed of GABAergic direct (dSPNs) and indirect pathway (iSPNs) spiny projection neurons.

View Article and Find Full Text PDF

Effect decomposition is a critical technique for mechanism investigation in settings with multiple causally ordered mediators. Causal mediation analysis is a standard method for effect decomposition, but the assumptions required for the identification process are extremely strong. Moreover, mediation analysis focuses on addressing mediating mechanisms rather than interacting mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • Methamphetamine causes mitochondrial stress in axons of the substantia nigra and ventral tegmental area, which is linked to neurodegeneration.
  • While both areas experience similar levels of mitochondrial stress from meth, only the substantia nigra neurons degenerate, indicating that stress alone isn't enough to cause degeneration in the VTA.
  • Interventions such as MAO inhibition and L-type calcium channel blockers, along with antioxidants, can prevent this degeneration, highlighting the importance of mitochondrial stress mechanisms in chronic meth use.
View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the degeneration of dopamine neurons in the substantia nigra, leading to a depletion of dopamine in the striatum and resulting in motor symptoms like tremors and rigidity.
  • The striatum contains spiny projection neurons (SPNs) that are divided into two pathways—direct and indirect—both of which play crucial roles in coordinating movement.
  • The article reviews how current rodent models of PD help understand the dynamics of SPNs and the disease's development, particularly in the premotor stage, even though these models may not fully replicate the asymptomatic phase of the disease.
View Article and Find Full Text PDF

The motor symptoms of Parkinson's disease (PD) are thought to stem from an imbalance in the activity of striatal direct- and indirect-pathway spiny projection neurons (SPNs). Disease-induced alterations in the activity of networks controlling SPNs could contribute to this imbalance. One of these networks is anchored by the parafascicular nucleus (PFn) of the thalamus.

View Article and Find Full Text PDF

Background: Loss of parvalbumin interneurons in the hippocampus is a robust finding in schizophrenia brains. Rats exposed during embryonic day 17 to methylazoxymethanol acetate exhibit characteristics consistent with an animal model of schizophrenia, including decreased parvalbumin interneurons in the ventral hippocampus. We reported previously that peripubertal administration of diazepam prevented the emergence of pathophysiology in adult methylazoxymethanol acetate rats.

View Article and Find Full Text PDF

In addition to prefrontal cortex (PFC) and hippocampus, amygdala may have a role in the pathophysiology of schizophrenia, given its pivotal role in emotion and extensive connectivity with the PFC and hippocampus. Moreover, abnormal activities of amygdala may be related to the anxiety observed in schizophrenia patients and at-risk adolescents. These at-risk subjects demonstrated heightened levels of anxiety, which are correlated with the onset of psychosis later in life.

View Article and Find Full Text PDF

Changes in the actin cytoskeleton in neurons are associated with synaptic plasticity and may also be involved in mechanisms of nociception. We found that the LIM motif-containing protein kinases (LIMKs), which regulate actin dynamics, promoted the development of inflammatory hyperalgesia (excessive sensitivity to painful stimuli). Pain is sensed by the primary sensory neurons of dorsal root ganglion (DRG).

View Article and Find Full Text PDF

Schizophrenia is believed to arise from an interaction of genetic predisposition and adverse environmental factors, with stress being a primary variable. We propose that alleviating anxiety produced in response to stress during a sensitive developmental period may circumvent the dopamine (DA) system alterations that may correspond to psychosis in adults. This was tested in a developmental rat model of schizophrenia based on prenatal administration of the mitotoxin methyl azoxymethanol acetate (MAM).

View Article and Find Full Text PDF

Toll-like receptors are involved in host defense against invading pathogens. The two members of this superfamily, IL-1R and TLR4, activate overlapping NF-kappaB activate signaling pathway mediated by TRAF6. In this study, we identified syntenin as a negative regulator of IL-1R and TLR4 mediated NF-kappaB activation.

View Article and Find Full Text PDF