Publications by authors named "Yijing Xing"

Article Synopsis
  • - Copper pollution from industrial activities negatively affects plant growth and poses health risks through the food chain by accumulating in plants.! - DCPTA has been shown to help plants cope with copper stress by improving leaf pigment, photosynthesis, root growth, and antioxidant levels, while reducing copper accumulation in cucumber plants.! - Gene analysis indicates that specific genes related to copper metabolism, cell structure, and nitrogen processing are essential in regulating plant response to copper toxicity, suggesting that DCPTA can partially alleviate this stress in cucumbers.!
View Article and Find Full Text PDF

To address the issue of phosphorus limitation in agricultural and forestry production and to identify green and economical alternatives to chemical phosphorus fertilizers, this paper reviews the utilization of phosphorus in plant-soil systems and explores the considerable potential for exploiting endogenous phosphorus resources. The application of phosphate-solubilizing microorganisms (PSMs) is emphasized for their role in phosphorus activation and plant growth promotion. A focus is placed on microbial interactions as an entry point to regulate the functional rhizosphere microbiome, introducing the concept of synthetic communities.

View Article and Find Full Text PDF

To promote further commercialization of proton exchange membrane (PEM) fuel cells, developing a novel preparation method for high-performance and durable membrane electrode assemblies (MEAs) is imperative. In this study, we adopt the reverse membrane deposition process and expanded polytetrafluoroethylene (ePTFE) reinforcing technology to optimize the interface combination and durability of MEAs simultaneously for the preparation of novel MEAs with double-layer ePTFE reinforcement skeletons (DR-MEA). With the wet-contact between the liquid ionomer solution and porous catalyst layers (CLs), a tight 3D PEM/CL interface is formed in the DR-MEA.

View Article and Find Full Text PDF

Phosphate-mobilizing bacteria (PMB) play a critical role in the regulation of phosphorus availability in the soil. The microbial genes pqqC and phoD encode pyrroloquinoline quinone synthase and bacterial alkaline phosphatase, respectively, which regulate inorganic and organic phosphorus mobilization, and are therefore used as PMB markers. We examined the effects of soil properties in three Moso bamboo forest sites on the PMB communities that were profiled using high-throughput sequencing.

View Article and Find Full Text PDF

Phosphorus-solubilizing microorganisms (PSMicros) play vital roles in helping plants to resist phosphorus (P) deficiency in soils, while their activities may vary with site conditions. The present study investigated the microbial diversity and subsequently screened PSMicro strains from rhizosphere soils at five bamboo forests in subtropical China, among which four were developed in a same stand. The activities of the screened PSMicros were also assessed.

View Article and Find Full Text PDF

Proton exchange membrane (PEM) is critical for the efficient, reliable and safe operation of proton exchange membrane fuel cells (PEMFC). The lifetime of PEM is the main factor restricting the commercialization of PEMFC. The complexity of operating conditions, such as open-circuit/idling, dynamic load and startup-shutdown under automotive conditions, on PEMFC will cause the mechanical and chemical degradation of PEM and affect the service life of PEMFC.

View Article and Find Full Text PDF