Neonatal Jaundice is a common occurrence in neonates. High excess bilirubin would lead to hyperbilirubinemia, leading to irreversible adverse damage such as kernicterus. Therefore, it is necessary and important to monitor neonates' bilirubin levels in real-time for immediate intervention.
View Article and Find Full Text PDFMetallo-covalent organic frameworks (metallo-COFs) are organometallic scaffolds in which covalently bonded organic frameworks are interwoven with metal-coordinated pendant groups. Unlike the rigid ligands traditionally used for metal coordination, the utilization of "soft" ligands allows for configurable topology and pore structure in metallo-COFs, particularly when the ligands are generated in situ during dynamic synthesis. In this study, we present the rational synthesis of metallo-COFs based on pyridine-2,6-diimine (pdi), wherein the incorporation of Zn ions and in situ-generated tridentate ligands (pdi) yields metallo-COFs with a square-like lattice.
View Article and Find Full Text PDFTo realize the practical application of lithium-sulfur (Li-S) batteries, there is a need to inhibit uncontrolled Li deposition by facilitating Li-ion migration, and suppress the irreversible consumption of cathodes by preventing polysulfide shuttling. However, a permselective artifical membrane or interlayer which features fast ion transport but low polysulfide crossover is elusive. Here, we report the design and synthesis of a fluorinated covalent organic framework (4F-COF)-based membrane with a high permselectivity and increased battery lifespan.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2023
Non-aqueous Li-air batteries, despite their high energy density and low cost, have not been deployed practically due to their instability in ambient air, where moisture causes parasitic reactions and shortens their life drastically. Here, we demonstrate the rational design of nanoporous covalent organic frameworks (COFs) as effective gas diffusion layers (GDLs) to address this constraint. The COF GDLs, with a tailor-made pore size of ≈1.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2022
Developing universal stimuli-responsive materials capable of emitting a broad spectrum of colors is highly desirable. Herein, we deliberately grafted a conformation-adaptable organic chromophore into the established coordination space of a flexible metal-organic framework (MOF). In terms of the coupled structural transformations and the space confinement, the chromophore in the MOF matrix underwent well-regulated conformational changes under physical and chemical stimuli, simultaneously displaying thermo-, piezo-, and solvato-fluoro-chromism with color tunability over the visible range.
View Article and Find Full Text PDFWe herein report a new coordination network that deforms in a smooth and reversible manner under either thermal or pressure stimulation. Concomitantly, the organic fluorophores coordinatively bound to the channel in a face-to-face arrangement respond to this structural deformation by finely adapting their conformation and arrangement. As a result, the material exhibits a remarkable dual-stimuli-responsive luminescence shift across almost the entire visible region: The emission color of the crystal gradually changes from cyan to green upon heating and then to red upon pressure compression.
View Article and Find Full Text PDFIn the present day, oligonucleotide-encapsulated silver clusters (DNA-AgNCs) have been widely applied into bio-analysis as a signal producer. Herein, we developed a novel method to synthesize DNA-AgNCs encapsulated by long-chain cytosine (C)-rich DNA. Such DNA was polymerized in a template-free way by terminal deoxynucleotidyl transferase (TdT).
View Article and Find Full Text PDFA novel homogenous fluorescent sensor for signal-on detection of Cu(2+) has been developed based on intra-molecular G-quadruplex formed by DNA-templated click reaction and crystal violet (CV) as label-free signal reporter. The clickable DNA probe consists of two G-rich strands (A and B) bearing azide and alkyne group, respectively, and a template strand (C) locating two proximate reactants by pairing with A and B. The sequences of A and B are derived from asymmetric split of the G-quadruplex sequence (TTAGGG)4.
View Article and Find Full Text PDF