Publications by authors named "Yiin-Kuen Fuh"

In the present study, the sputtered aluminum nitride (AlN) films were processed in a reactive pulsed DC magnetron system. We applied a total of 15 different design of experiments (DOEs) on DC pulsed parameters (reverse voltage, pulse frequency, and duty cycle) with Box-Behnken experimental method and response surface method (RSM) to establish a mathematical model by experimental data for interpreting the relationship between independent and response variables. For the characterization of AlN films on the crystal quality, microstructure, thickness, and surface roughness, X-ray diffraction (XRD), atomic force microscopy (AFM), and field emission-scanning electron microscopy (FE-SEM) were utilized.

View Article and Find Full Text PDF

This paper reports two piezoelectric materials of lead zirconium titanate (PZT) and aluminum nitride (AlN) used to simulate microelectromechanical system (MEMS) speakers, which inevitably suffered deflections as induced via the stress gradient during the fabrication processes. The main issue is the vibrated deflection from the diaphragm that influences the sound pressure level (SPL) of MEMS speakers. To comprehend the correlation between the geometry of the diaphragm and vibration deflection in cantilevers with the same condition of activated voltage and frequency, we compared four types of geometries of cantilevers including square, hexagon, octagon, and decagon in triangular membranes with unimorphic and bimorphic composition by utilizing finite element method (FEM) for physical and structural analyses.

View Article and Find Full Text PDF

Piezoelectric actuators with multi-layer structures have largely gained attention from academic and industry experts. This is due to its distinctive advantages of fast response time, huge generative force and the inherent good planar electromechanical coupling factor, as well as other mechanical qualities. Typically, lead zirconate titanate (PZT) is one of the most represented piezoelectric ceramic materials that have been used for multi-layer piezoelectric actuators.

View Article and Find Full Text PDF

In this study, three parameter optimization methods and two designs of experiments (DOE) were used for the optimization of three major design parameters ((bill diameter (D), billet length (L), and barrier wall design (BWD)) in crown forging to improve the formability of aluminum workpiece for shock absorbers. The first optimization method is the response surface method (RSM) combined with Box-Behnken's experimental design to establish fifteen (15) sets of parameter combinations for research. The second one is the main effects plot method (MEP).

View Article and Find Full Text PDF

In this study, we submit a complex set of in-situ data collected by optical emission spectroscopy (OES) during the process of aluminum nitride (AlN) thin film. Changing the sputtering power and nitrogen(N) flow rate, AlN film was deposited on Si substrate using a superior sputtering with a pulsed direct current (DC) method. The correlation between OES data and deposited film residual stress (tensile vs.

View Article and Find Full Text PDF

Researchers have made a lot of effort for the lightweight and high flexibility of wearable electronic devices, which also requires the associated energy harvesting equipment to have ultra-thin thickness and high stretchability. Therefore, a piezoelectric-triboelectric hybrid self-powered sensor (PTHS) has been proposed which can be used as the second layer of the human body. This elastic PTHS can even work on a person's fingers without disturbing the body's movements.

View Article and Find Full Text PDF

A simple and sustainable production of nanoplatelet graphite at low cost is presented using carbon-based materials, including the recycled lead-graphite pencils. In this work, exfoliated graphite nanoplatelets (EGNs), ball-milled exfoliated graphite nanoplatelets (BMEGNs) and recycled lead-graphite pencils (recycled 2B), as well as thermally cured polydimethylsiloxane (PDMS), are used to fabricate highly stretchable thermal-interface materials (TIMs) with good thermally conductive and mechanically robust properties. Several characterization techniques including scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) showed that recycled nanoplatelet graphite with lateral size of tens of micrometers can be reliably produced.

View Article and Find Full Text PDF

A novel integration of three-dimensional (3D) architectures of near-field electrospun polyvinylidene fluoride (PVDF) nano-micro fibers (NMFs) is applied to an intelligent self-powered sound-sensing element (ISSE). Using 3D architecture with greatly enhanced piezoelectric output, the sound wave energy can be harvested under a sound pressure of 120+ dB SPL of electrical signal about 0.25 V.

View Article and Find Full Text PDF

During the formation of Ge fin structures on a silicon-on-insulator (SOI) substrate, we found that the dry etching process must be carefully controlled. Otherwise, it may lead to Ge over-etching or the formation of an undesirable Ge fin profile. If the etching process is not well controlled, the top Ge/SOI structure is etched away, and only the Si fin layer remains.

View Article and Find Full Text PDF

Near-field electrospinning (NFES) is capable of precisely deposit one-dimensional (1D) or two-dimensional (2D) highly aligned micro/nano fibers (NMFs) by electrically discharged a polymer solution. In this paper, a new integration of three-dimensional (3D) architectures of NFES electrospun polyvinylidene fluoride (PVDF) NMFs with the 3D printed topologically tailored substrate are demonstrated in a direct-write and in-situ poled manner, called wavy- substrate self-powered sensors (WSS). The fabrication steps are composed of the additive manufacture of 3D printed flexible and sinusoidal wavy substrate, metallization and NFES electrospun fibers in the 3D topology.

View Article and Find Full Text PDF

In this paper, we introduce a novel concept of liquid-actuated aspheric lens (LAL) with a built-in aspheric polydimethylsiloxane lens (APL) to enable the design of compact optical systems with varifocal microscopic imaging. The varifocal lens module consists of a sandwiched structures such as 3d printed syringe pump functionally serves as liquid controller. Other key components include two acrylic cylinders, a rigid separator, a APL/membrane composite (APLMC) embedded PDMS membrane.

View Article and Find Full Text PDF

In this study, we demonstrated a flexible and self-powered sensor based on piezoelectric fibers in the diameter range of nano- and micro-scales. Our work is distinctively different from previous electrospinning research; we fabricated this apparatus precisely via near-field electrospinning which has a spectacular performance to harvest mechanical deformation in arbitrary direction and a novel concentrically circular topography. There are many piezoelectric devices based on electrospinning polymeric fibers.

View Article and Find Full Text PDF

In this paper, we demonstrated a highly-flexible all-fiber based transparent piezoelectric harvester (ATPH) by using the direct-write, near-field electrospinning (NFES) technique and polyvinylidene fluoride (PVDF) micro/nano fibers (MNFs) as source materials. Here, we comprehensively show that transferred high performance transparent electrodes with Au-coated nanowire (NW) electrodes can be obtained using a facile and scalable combined fabrication route of both electrospinning and sputtering processes. Au-coated MNFs of a.

View Article and Find Full Text PDF

For spatially controlling cell alignment, near field electrospinning (NFES) was developed to direct-write alginate fiber patterns. Compared to randomly electrospun fibers, NFES fibers guided the extension of HEK 293T cells and the levels of cell alignment increased with decreasing fiber distances. However, these guiding fibers were unfavorable for cell adhesion and limited cell growth.

View Article and Find Full Text PDF

Piezoelectric fiber-based generators are prepared by combining two distinctive materials - poly(vinlyidene fluoride) fibers and monolayer/bilayer graphene. Novelty lies in the replacement of opaque metal electrodes with transparent graphene electrodes which enable the graphene-piezoelectric fiber generator to exhibit high flexibility and transparency as well as a great performance with an achievable output of voltage/current about 2 V/200 nA.

View Article and Find Full Text PDF

In this paper, we demonstrate a new integration of printed circuit board (PCB) technology-based self-powered sensors (PSSs) and direct-write, near-field electrospinning (NFES) with polyvinylidene fluoride (PVDF) micro/nano fibers (MNFs) as source materials. Integration with PCB technology is highly desirable for affordable mass production. In addition, we systematically investigate the effects of electrodes with intervals in the range of 0.

View Article and Find Full Text PDF
Article Synopsis
  • Conventional adaptive lenses often have optical performance issues due to deformable interfaces, leading to significant aberrations.
  • The introduced dual-function fluidic lenses (DFFL) feature a built-in aspheric polydimethylsiloxane lens (APL) that allows for adjustable imaging and aberration correction through changes in hydrostatic pressure.
  • DFFL can switch between four optical modes and demonstrate a focal tunability from 12/8 mm to about 90/65 mm, achieving high-quality imaging comparable to commercial microscopes.
View Article and Find Full Text PDF

We present a polyvinylidene fluoride (PVDF) nanogenerator (NG) with advantages of direct writing and in situ poling via near-field electrospinning (NFES), which is completely location addressable and substrate independent. The maximum output voltage reached 20 V from the three layers piled NGs with serial connections, and the maximum output current can exceed 390 nA with the parallel integration setup. Linear superposition and switching polarity of current and voltage tests were validated by the authentic piezoelectric output.

View Article and Find Full Text PDF

A rapid, cost-effective and high-throughput process for nanotexturing subwavelength structures with high uniformity using the polycarbonate (PC) is realized via injection nanomolding. The process enables the precise control of nanohole array (NHA) surface topography (nanohole depth, diameter, and periodicity) over large areas thereby presenting a highly versatile platform for fabricating substrates with user-defined, functional performance. Specifically, the optical property of the PC substrates were systematically characterized and tuned through the modulation of the depths of NHA.

View Article and Find Full Text PDF

Near-field electrospinning has been demonstrated to be able to achieve direct-write and highly aligned chitosan nanofibers (CNF) with prescribed positioning density. Cell spreading in preferential direction could be observed on parallel-aligned nanofibers, and the CNF patterns were capable of guiding cell extension when the distances between them are 20 and 100 μm, respectively. Alignment of the cells was characterized according to their elongation and orientation using the fast Fourier transform data and binary image analysis.

View Article and Find Full Text PDF

Due to the scarcity and high cost of indium, the predominant use of indium tin oxide (ITO) films as transparent electrodes has attracted great attention for finding a potential replacement, such as solution-processed networks of carbon nanotubes, graphene, or silver nanowires (NWs). More recently, the use of electrospun copper NWs as high-performance electrodes with a high aspect ratio of 100,000 and 90% transmittance at 50 Ω/sq was experimentally achieved. However, the fabrication route of the Cu nanofiber (NF) web includes two high temperature processes (calcined 2 h in air at 500 °C and annealed 1 h in hydrogen at 300 °C).

View Article and Find Full Text PDF

We present an in-process measurement of surface roughness by combining an optical probe of laser-scattering phenomena and adaptive optics for aberration correction. Measurement results of five steel samples with a roughness ranging from 0.2 to 3.

View Article and Find Full Text PDF

Nanogenerators capable of converting energy from mechanical sources to electricity with high effective efficiency using low-cost, nonsemiconducting, organic nanomaterials are attractive for many applications, including energy harvesters. In this work, near-field electrospinning is used to direct-write poly(vinylidene fluoride) (PVDF) nanofibers with in situ mechanical stretch and electrical poling characteristics to produce piezoelectric properties. Under mechanical stretching, nanogenerators have shown repeatable and consistent electrical outputs with energy conversion efficiency an order of magnitude higher than those made of PVDF thin films.

View Article and Find Full Text PDF