Publications by authors named "Yihui Shi"

Article Synopsis
  • Researchers studied a small molecule called miR-876, which is found on a part of our DNA that is often messed up in melanoma (a type of skin cancer).
  • They found that miR-876 levels are lower in melanoma tumors compared to normal skin, and when they increased miR-876 in test cells, it made the cancer cells grow slower and die off more easily.
  • Tests showed that boosting miR-876 also stopped tumors from growing in live models, and it worked by blocking a gene called MAPK1 that helps cancer cells grow.
View Article and Find Full Text PDF

HER2 (human epidermal growth factor receptor 2) is highly expressed in a variety of cancers, including breast, lung, gastric, and pancreatic cancers. Its amplification is linked to poor clinical outcomes. At the genetic level, HER2 is encoded by the ERBB2 gene (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2), which is frequently mutated or amplified in cancers, thus spurring extensive research into HER2 modulation and inhibition as viable anti-cancer strategies.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell immunotherapy represents a cutting-edge advancement in the landscape of cancer treatment. This innovative therapy has shown exceptional promise in targeting and eradicating malignant tumors, specifically leukemias and lymphomas. However, despite its groundbreaking successes, (CAR)-T cell therapy is not without its challenges.

View Article and Find Full Text PDF

Necroptosis is a pivotal contributor to the pathogenesis of various human diseases, including those affecting the nervous system, cardiovascular system, pulmonary system, and kidneys. Extensive investigations have elucidated the mechanisms and physiological ramifications of necroptosis. Among these, protein phosphorylation emerges as a paramount regulatory process, facilitating the activation or inhibition of specific proteins through the addition of phosphate groups to their corresponding amino acid residues.

View Article and Find Full Text PDF

The farnesoid-X receptor (FXR), a member of the nuclear hormone receptor superfamily, can be activated by bile acids (BAs). BAs binding to FXR activates BA signaling which is important for maintaining BA homeostasis. FXR is differentially expressed in human organs and exists in immune cells.

View Article and Find Full Text PDF

This review highlights Receptor Expressed in Lymphoid Tissues (RELT), a Tumor Necrosis Factor Superfamily member, and its two paralogs, RELL1 and RELL2. Collectively, these three proteins are referred to as RELTfms and have gained much interest in recent years due to their association with cancer and other human diseases. A thorough knowledge of their physiological functions, including the ligand for RELT, is lacking, yet emerging evidence implicates RELTfms in a variety of processes including cytokine signaling and pathways that either promote cell death or survival.

View Article and Find Full Text PDF

Early detection of breast cancer plays a critical role in successful treatment that saves thousands of lives of patients every year. Despite massive clinical data have been collected and stored by healthcare organizations, only a small portion of the data has been used to support decision-making for treatments. In this study, we proposed an engineered up-sampling method (ENUS) for handling imbalanced data to improve predictive performance of machine learning models.

View Article and Find Full Text PDF

Chimeric antigen receptors (CAR) T cells are T cells engineered to express membrane receptors with high specificity to recognize specific target antigens presented by cancer cells and are co-stimulated with intracellular signals to increase the T cell response. CAR-T cell therapy is emerging as a novel therapeutic approach to improve T cell specificity that will lead to advances in precision medicine. CAR-T cells have had impressive outcomes in hematological malignancies.

View Article and Find Full Text PDF

In the United States, breast cancer is among the most frequently diagnosed cancers in women. Breast cancer is classified into four major subtypes: human epidermal growth factor receptor 2 (HER2), Luminal-A, Luminal-B, and Basal-like or triple-negative, based on histopathological criteria including the expression of hormone receptors (estrogen receptor and/or progesterone receptor) and/or HER2. Primary breast cancer treatments can include surgery, radiation therapy, systemic chemotherapy, endocrine therapy, and/or targeted therapy.

View Article and Find Full Text PDF

and are tumor suppressor genes with pivotal roles in the development of breast and ovarian cancers. These genes are essential for DNA double-strand break repair via homologous recombination (HR), which is a virtually error-free DNA repair mechanism. Following or mutations, HR is compromised, forcing cells to adopt alternative error-prone repair pathways that often result in tumorigenesis.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapy is an innovative form of immunotherapy wherein autologous T-cells are genetically modified to express chimeric receptors encoding an antigen-specific single-chain variable fragment and costimulatory molecules. Moreover, CAR T-cell therapy can only work successfully in patients who have an intact immune system. Therefore, patients receiving cytotoxic chemotherapy will be immunosuppressed making CAR-T therapy less effective.

View Article and Find Full Text PDF

Receptor Expressed in Lymphoid Tissues (RELT) is a human tumor necrosis factor receptor superfamily member (TNFRSF) that is expressed most prominently in cells and tissues of the hematopoietic system. RELL1 and RELL2 are two homologs that physically interact with RELT and co-localize with RELT at the plasma membrane. This study sought to further elucidate the function of RELT by identifying novel protein interactions with RELT family members.

View Article and Find Full Text PDF

Agents that modulate pre-mRNA splicing are of interest in multiple therapeutic areas, including cancer. We report our recent screening results with the application of a cell-based Triple Exon Skipping Luciferase Reporter (TESLR) using a library that is composed of FDA approved drugs, clinical compounds, and mechanistically characterized tool compounds. Confirmatory assays showed that three clinical antitumor therapeutic candidates (milciclib, PF-3758309 and PF-562271) are potent splicing modulators and that these drugs are, in fact, nanomolar inhibitors of multiple kinases involved in the regulation the spliceosome.

View Article and Find Full Text PDF

This study combines a high-performance liquid chromatography-fluorescent detection method (HPLC-FLD) with in-situ cell imaging for the sensitive analysis of glutathione (GSH), cysteine (Cys) and homocysteine (Hcys), using BODIPY®507/545 IA as a labeling reagent. The analytical potential of BODIPY®507/545 IA in cell imaging was deeply explored, concerning fluorescent response, selectivity, cell-permeability, biotoxicity and so on. It is demonstrated that BODIPY®507/545 IA has good biocompatibility and the fluorescence intensity is enhanced remarkably after reacting with thiols.

View Article and Find Full Text PDF

The splicing of pre-mRNA is a critical process in normal cells and is deregulated in cancer. Compounds that modulate this process have recently been shown to target a specific vulnerability in tumors. We have developed a novel cell-based assay that specifically activates luciferase in cells exposed to SF3B1 targeted compounds, such as sudemycin D6.

View Article and Find Full Text PDF

Here we describe a new approach for tumor targeting in which augmented concentrations of Fe(II) in cancer cells and/or the tumor microenvironment triggers drug release from an Fe(II)-reactive prodrug conjugate. The 1,2,4-trioxolane scaffold developed to enable this approach can in principle be applied to a broad range of cancer therapeutics and is illustrated here with Fe(II)-targeted forms of a microtubule toxin and a duocarmycin-class DNA-alkylating agent. We show that the intrinsic reactivity/toxicity of the duocarmycin analog is masked in the conjugated form and this greatly reduced toxicity in mice.

View Article and Find Full Text PDF

A new HA/ZrO2-based porous bioceramic artificial vertebral body (AVB), carried a recombinant human bone morphogenetic protein-2 (rhBMP-2)/chitosan slow-release hydrogel was prepared to repair vertebral bone defect in beagles. An ionic cross-linking was used to prepare the chitosan hydrogel (CS gel) as the rhBMP-2 slow-release carrier. The vertebral body defects were implanted with the rhBMP-2-loaded AVB in group A, or a non-drug-loaded AVB in group B, or autologous iliac in group C.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Acupuncture is a key part of traditional Chinese medicine, shown to induce favorable neuroplasticity for injuries in the central and peripheral nervous systems. Recent studies report elongated needle therapy (ENT) with BL54 and ST28 may restore acute spinal cord injury (ASCI). However, the precise mechanism for this has not been elucidated.

View Article and Find Full Text PDF

Depletion of inositol has profound effects on cell function and has been implicated in the therapeutic effects of drugs used to treat epilepsy and bipolar disorder. We have previously shown that the anticonvulsant drug valproate (VPA) depletes inositol by inhibiting myo-inositol-3-phosphate synthase, the enzyme that catalyzes the first and rate-limiting step of inositol biosynthesis. To elucidate the cellular consequences of inositol depletion, we screened the yeast deletion collection for VPA-sensitive mutants and identified mutants in vacuolar sorting and the vacuolar ATPase (V-ATPase).

View Article and Find Full Text PDF

The spliceosome has recently emerged as a new target for cancer chemotherapy and novel antitumor spliceosome targeted agents are under development. Here, we describe two types of novel pharmacodynamic assays that facilitate drug discovery and development of this intriguing class of innovative therapeutics; the first assay is useful for preclinical optimization of small-molecule agents that target the SF3B1 spliceosomal protein in animals, the second assay is an ex vivo validated, gel-based assay for the measurement of drug exposure in human leukocytes. The first assay utilizes a highly specific bioluminescent splicing reporter, based on the skipping of exons 4-11 of a Luc-MDM2 construct, which specifically yields active luciferase when treated with small-molecule spliceosome modulators.

View Article and Find Full Text PDF

Previous studies had implicated the IFN-γ transcription factor signal transducer and activator of transcription 1 (STAT1) as a tumor suppressor. However, accumulating evidence has correlated increased STAT1 activation with increased tumor progression in multiple types of cancer, including breast cancer. Indeed, we present evidence that tumor up-regulation of STAT1 activity in human and mouse mammary tumors correlates with increasing disease progression to invasive carcinoma.

View Article and Find Full Text PDF