Enteroviruses are important human pathogens with diverse serotypes, posing a major challenge to develop vaccines for individual serotypes, the success of polio vaccines in controlling and eradicating polio, along with the recent emergence and high prevalence of enterovirus-caused infectious diseases, highlights the importance of enterovirus vaccine development. Given our previous report on enteroviruses weakened by the 2 A S/T125A mutation, we assessed the potential of the EV-A71 2A-125A mutant as a vaccine candidate to address this challenge. We found that the 2A-125A mutant caused transient mild symptoms, low viral loads, and no significant pathological changes mild pathological changes in hSCARB2-KI mice, producing long-lasting cross-neutralizing antibodies against two EV-A71 wild strains.
View Article and Find Full Text PDFDevelopment of lysosomes and mitochondria dual-targeting photosensitizer with the virtues of near-infrared (NIR) emission, highly efficient reactive oxygen generation, good phototoxicity and biocompatibility is highly desirable in the field of imaging-guided photodynamic therapy (PDT) for cancer. Herein, a new positively charged amphiphilic organic compound (2-(2-(5-(7-(4-(diphenylamino)phenyl)benzo[][1,2,5]thiadiazol-4-yl)thiophen-2-yl)vinyl)-3-methylbenzo[]thiazol-3-ium iodide) () based on a D-A--A structure is designed and comprehensively investigated. demonstrates special lysosomes and mitochondria dual-organelles targeting, bright NIR aggregation-induced emission (AIE) at 736 nm, high singlet oxygen (O) quantum yield (0.
View Article and Find Full Text PDFThe farnesoid X receptor (FXR) is a ligand-activated nuclear receptor. Activation of FXR significantly impacts the expressions of the pivotal genes involved in bile acid metabolism, inflammation, fibrosis, and homeostasis of lipid and glucose, leading to considerable interests in developing FXR agonists for the treatment of nonalcoholic steatohepatitis (NASH) or other FXR-relevant diseases. Herein, we describe the design, optimization, and characterization of a series of -methylene-piperazinyl derivatives as the nonbile acid FXR agonists.
View Article and Find Full Text PDFEnteroviral 2A proteinase (2A ), a well-established and important viral functional protein, plays a key role in shutting down cellular cap-dependent translation, mainly via its proteolytic activity, and creating optimal conditions for Enterovirus survival. Accumulated data show that viruses take advantage of various signaling cascades for their life cycle; studies performed by us and others have demonstrated that the extracellular signal-regulated kinase (ERK) pathway is essential for enterovirus A71 (EV-A71) and other viruses replication. We recently showed that ERK1/2 is required for the proteolytic activity of viral 2A ; however, the mechanism underlying the regulation of 2A remains unknown.
View Article and Find Full Text PDFIntensive efforts have been made to develop models of hRSV infection or disease using various animals. However, the limitations such as semi-permissiveness and short duration of infection have impeded their applications in both the pathogenesis of hRSV and therapeutics development. Here, we present a mouse model based on a gene knockout using CRISPR/Cas9 technology.
View Article and Find Full Text PDFDeubiquitinating enzymes (DUBs) are cysteine proteases that reverse the ubiquitination by removing ubiquitins from the target protein. The human genome encodes ∼100 potential DUBs, which can be classified into six families, influencing multiple cellular processes, such as antiviral responses, inflammatory responses, apoptosis, etc. To systematically explore the role of DUBs involved in antiviral immunity, we performed an RNA interference-based screening that contains 97 human DUBs.
View Article and Find Full Text PDFA series of hybrids of MEK inhibitor and nitric oxide donor have been designed and synthesized. Compound 18h [4-(3-((3-(2-fluoro-3-((N-methylsulfamoyl)amino)benzyl)-4-methyl-2-oxo-2H-chromen-7-yl)oxy) propoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole 2-oxide] was proven to be more potent than the clinical compound RO5126766 in MDA-MB-231 cells. Compound 18h can significantly reduce the levels of pMEK and pERK, induce cell apoptosis in MDA-MB-231 cells, and release NO in cells efficiently, suggesting that these hybrids, while displaying the properties of both MEK inhibitors and NO donors have a mechanism of action different from that of MEK inhibitors and NO donors.
View Article and Find Full Text PDFEnterovirus A71 (EV-A71) is the major pathogen responsible for the severe hand, foot and mouth disease worldwide, for which few effective antiviral drugs are presently available. Interferon-α (IFN-α) has been used in antiviral therapy for decades; it has been reported that EV-A71 antagonizes the antiviral activity of IFN-α based on viral 2A-mediated reduction of the interferon-alpha receptor 1 (IFNAR1); however, the mechanism remains unknown. Here, we showed a significant increase in IFNAR1 protein induced by IFN-α in RD cells, whereas EV-A71 infection caused obvious down-regulation of the IFNAR1 protein and blockage of IFN-α signaling.
View Article and Find Full Text PDFActivation of the ERK signaling cascade in host cells has been demonstrated to be essential for enterovirus A71 (EV-A71) replication. Our previous study showed that MEK kinase, which specially activated downstream ERK kinase, is an important and potential target against EV-A71. Furthermore, we reported that a series of substituted 3-benzylcoumarins designed and synthesized as well as verified for inhibiting the MEK-ERK cascade were found to be effective on anti-EV-A71.
View Article and Find Full Text PDFThe effects of combined exposure to perfluoroalkyl acids (PFAAs) and heavy metals (HMs) including cadmium (Cd), copper (Cu), zinc (Zn), nickel (Ni), and lead (Pb) on earthworms (Eisenia fetida) were investigated. The results have demonstrated that the concentrations of labile acid exchangeable Cd, Zn, Ni, Pb, and Cu in soil were enhanced in addition of PFAAs. With PFAAs, the uptake of Cd, Zn, Ni, Pb, and Cu in earthworms was increased compared to those without PFAAs with the order of Cd > Zn > Pb > Ni > Cu.
View Article and Find Full Text PDFJ Virol Methods
October 2017
A versatile single-step method is described for constructing a picornavirus replicon RNA with precise ends to facilitate improved understanding of viral genome function and mimic native virus replication in host cells as far as possible. The key innovation in this new approach is the use of a bridge primer to both introduce a ribozyme sequence for cis-cleavage of RNA to generate precise 5' ends of EV71 RNA and also mediate overlapping assembly of two fragments. Using an EV71 replicon as a test case, precise ends for the viral replicon were shown to be important for efficient virus replication.
View Article and Find Full Text PDFIn a previous study the ERK1/2 pathway was found to be crucially involved in positive regulation of the enterovirus A 71(EV-A71) IRES (vIRES), thereby contributing to the efficient replication of an important human enterovirus causing death in young children (<5yrs) worldwide. This study focuses on unraveling more about the detailed mechanism of ERK's involvement in this regulation of vIRES. Through the use of siRNAs and specifically pharmacological inhibitor U0126, the ERK cascade was shown to positively regulate EV-A71-mediated cleavage of eIF4GI that established the cellular conditions which favour vIRES-dependent translation.
View Article and Find Full Text PDFCurrently, it is still controversial that if the pathogenicity of EV-A71 causing severe or mild hand, foot, and mouth disease (HFMD) is associated with viral nucleotide or amino acid sequence(s). In this study, 19 clinical strains were detected in samples from diagnosed patients of EV-A71-caused HFMD with mild or severe symptoms. Then, VP1-2A fragment sequences of 19 EV-A71 isolates were determined, the phylogenetic analysis, based on VP1 sequences of 19 EV-A71 stains in this study and which of 62 EV-A71 strains with different clinical phenotypes reported before, were carried out.
View Article and Find Full Text PDFEnterovirus 71 (EV71) is a kind of RNA virus and one of the two causes of Hand, foot and mouth disease (HFMD). Inhibitors that target key components of Ras/Raf/MEK/ERK pathway in host cells could impair replication of EV71. A series of 3-benzyl-1,3-benzoxazine-2,4-diones were designed from a specific MEK inhibitor G8935, by replacing the double bond between C3 and C4 within the coumarin scaffold with amide bond.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
December 2015
Objective: To determine the prevalence of Salmonella paratyphi C phage (SPC-P1) in different Salmonella serovars and to identify the integration sites in host genome.
Methods: Based on the complete genome of SPC-P1 in S. paratyphi C RKS4594, 6 pairs of primers were designed and used to amplify the fragments of SPC-P1 in 11 S.
It has been demonstrated that passenger strand cleavage is important for the activation of RNA-induced silencing complex (RISC), which is a crucial step for siRNA-mediated gene silencing. Herein, we report that isonucleotide (isoNA) modification around the cleavage site of the passenger strand would affect the in vitro potency of modified siRNAs by altering the motion pattern of the Ago2-PAZ domain. According to western blotting, q-PCR and antiviral test results, we proved that D-isonucleotide (isoNA) modification at the position 8 of the passenger strand (siMek1-S08D), which is adjacent to the cleavage site, markedly improved the in vitro potency of the modified siRNA, whereas siRNAs with D-isoNA incorporation at position 9 (siMek1-S09D) or L-isoNA incorporation at positions 8 and 9 (siMek1-S08L, siMek1-S09L) displayed lower activity compared to native siRNA.
View Article and Find Full Text PDFIt has been demonstrated that MEK1, one of the two MEK isoforms in Raf-MEK-ERK1/2 pathway, is essential for successful EV71 propagation. However, the distinct function of ERK1 and ERK2 isoforms, the downstream kinases of MEKs, remains unclear in EV71 replication. In this study, specific ERK siRNAs and selective inhibitor U0126 were applied.
View Article and Find Full Text PDFThe activation of ERK and p38 signal cascade in host cells has been demonstrated to be essential for picornavirus enterovirus 71 (EV71) replication and up-regulation of virus-induced cyclooxygenase-2 (COX-2)/prostaglandins E2 (PGE2) expression. The aim of this study was to examine the effects of sorafenib, a clinically approved anti-cancer multi-targeted kinase inhibitor, on the propagation and pathogenesis of EV71, with a view to its possible mechanism and potential use in the design of therapy regimes for Hand foot and mouth disease (HFMD) patients with life threatening neurological complications. In this study, non-toxic concentrations of sorafenib were shown to inhibit the yield of infectious progeny EV71 (clinical BC08 strain) by about 90% in three different cell types.
View Article and Find Full Text PDFEnterovirus 71 (EV71), a member of Picornaviridae, is one of the major pathogens of human hand, foot and mouth disease. EV71 mainly infects children and causes severe neurological complications and even death. The pathogenesis of EV71 infection is largely unknown, and no clinically approved vaccine or effective treatment is available to date.
View Article and Find Full Text PDFIn order to find novel antiviral agents, a series of allosteric MEK1 inhibitors were designed and synthesized. Based on docking results, multiple optimizations were made on the coumarin scaffold. Some of the derivatives showed excellent MEK1 binding affinity in the appropriate enzymatic assays and displayed obvious inhibitory effects on the ERK pathway in a cellular assay.
View Article and Find Full Text PDFCellular p53 and its downstream mediator p21, the major cellular growth suppression and DNA repair markers, have recently been implicated in viral amplification. Here, we show that herpes simplex virus type 2 (HSV-2) infection of both HCT116 p53(+/+)and NIH3T3 cells resulted in sustained increases of p21. HSV-2 infection did not increase cellular p53 expression, but led to phosphorylation of this protein at Ser20.
View Article and Find Full Text PDFThe role of the MEK1-ERK signaling cascade in the replication cycle of Enterovirus 71 (EV71), the primary cause of hand, foot and mouth disease (HFMD), has been analyzed. In vitro infection with EV71 induced a biphasic activation of ERK. The two phases of activation appeared to be triggered by different mechanisms, with the first phase being activated by the binding of viral particles to the membrane receptor of host cells and the second probably being in response to the production of new virus particles.
View Article and Find Full Text PDFDuring infection, viruses hijack various host cell components and programs for their amplification, among which is the canonical ERK signaling pathway, mainly consisting of three tiered serine/threonine kinases, Raf, MEK and ERK. MEK1 and MEK2 are two isoforms of the kinase operating immediately upstream of ERK, and connecting Raf and ERK by phosphorylating ERK. Previous studies have suggested that different isoforms of MEK have distinct biological functions, although their in vitro kinase function may be redundant.
View Article and Find Full Text PDFSalmonella enterica serovar Agona is an important zoonotic pathogen, causing serious human illness worldwide, but knowledge about its genetics and evolution, especially regarding the genomic events that might have contributed to the formation of S. Agona as an important pathogen, is lacking. As a first step toward understanding this pathogen and characterizing its genomic differences with other salmonellae, we constructed a physical map of S.
View Article and Find Full Text PDF