Publications by authors named "Yiheng Qiu"

The unit of visual working memory is a fundamental issue under debate in the fields of cognitive psychology and neuroscience, with some traditional research suggesting that it is an object, while other recent studies demonstrating that a Boolean map offers a better account. The controversy surrounding the unit of visual working memory often centers on the representation of objects consist of same dimensional features (e.g.

View Article and Find Full Text PDF

We introduce hybrid gausslet/Gaussian basis sets, where a standard Gaussian basis is added to a gausslet basis in order to increase accuracy near the nuclei while keeping the spacing of the grid of gausslets relatively large. The Gaussians are orthogonalized to the gausslets, which are already orthonormal, and approximations are introduced to maintain the diagonal property of the two electron part of the Hamiltonian so that it continues to scale as the second power of the number of basis functions rather than the fourth. We introduce several corrections to the Hamiltonian designed to enforce certain exact properties, such as the values of certain two-electron integrals.

View Article and Find Full Text PDF

Density functional calculations can fail for want of an accurate exchange-correlation approximation. The energy can instead be extracted from a sequence of density functional calculations of conditional probabilities (CP DFT). Simple CP approximations yield usefully accurate results for two-electron ions, the hydrogen dimer, and the uniform gas at all temperatures.

View Article and Find Full Text PDF

Methods which aim at universal applicability must be able to describe both weak and strong electronic correlation with equal facility. Such methods are in short supply. The combination of symmetry projection for strong correlation and coupled cluster theory for weak correlation offers tantalizing promise to account for both on an equal footing.

View Article and Find Full Text PDF

Coupled cluster theory is the method of choice for weakly correlated systems. But in the strongly correlated regime, it faces a symmetry dilemma, where it either completely fails to describe the system or has to artificially break certain symmetries. On the other hand, projected Hartree-Fock theory captures the essential physics of many kinds of strong correlations via symmetry breaking and restoration.

View Article and Find Full Text PDF

Our overarching goal is to be able to describe both weak and strong correlation with a single, computationally affordable method without sacrificing important qualities of the wavefunction, e.g. symmetries of the Hamiltonian.

View Article and Find Full Text PDF

Coupled cluster and symmetry projected Hartree-Fock are two central paradigms in electronic structure theory. However, they are very different. Single reference coupled cluster is highly successful for treating weakly correlated systems but fails under strong correlation unless one sacrifices good quantum numbers and works with broken-symmetry wave functions, which is unphysical for finite systems.

View Article and Find Full Text PDF

Gold compounds, clusters, and nanoparticles are widely used as catalysts and therapeutic medicines; the interactions between gold and its ligands in these systems play important roles in their chemical properties and functionalities. In order to elucidate the nature of the chemical interactions between Au(I) and its ligands, herein we use several theoretical methods to study the chemical bonding in a variety of linear [AuX2](-) complexes, where X = halogen atoms (F, Cl, Br, I, At and Uus), H, OH, SH, OCH3, SCH3, CN and SCN. It is shown that the most important bonding orbitals in these systems have significant contributions from the Au sd hybridized atomic orbitals.

View Article and Find Full Text PDF

LiF-ThF4 molten salt (MS) is the fuel for advanced MS reactors. Knowledge of the microscopic MS structure and dynamics is required for an understanding of the macroscopic physical and chemical properties of the MS phases. We have performed molecular dynamics simulations on LiF-ThF4 MS at different molar percentages (LiF/ThF4 = 20.

View Article and Find Full Text PDF

While uranyl halide complexes [UO2(halogen)n](2-n) (n = 1, 2, 4) are ubiquitous, the tricoordinate species have been relatively unknown until very recently. Here photoelectron spectroscopy and relativistic quantum chemistry are used to investigate the bonding and stability of a series of gaseous tricoordinate uranyl complexes, UO2X3(-) (X = F, Cl, Br, I). Isolated UO2X3(-) ions are produced by electrospray ionization and observed to be highly stable with very large adiabatic electron detachment energies: 6.

View Article and Find Full Text PDF