Quantum mechanical expectation values for subsets can differ substantially from those for the whole ensemble. This implies that the effect of interactions between two systems can be altered substantially by conditioning. Here, we experimentally demonstrate that, for two light fields ψ_{S} (signal) and ψ_{A} (ancilla) that have only weakly interacted with one another, subsequent measurements on the ancilla can produce substantial conditional amplification, attenuation, or phase shift of ψ_{S}.
View Article and Find Full Text PDFWe create a one-dimensional strongly correlated quantum gas of ^{133}Cs atoms with attractive interactions by direct laser cooling in 300 ms. After compressing and cooling the optically trapped atoms to the vibrational ground state along two tightly confined directions, the emergence of a non-Gaussian time-of-flight distribution along the third, weakly confined direction reveals that the system enters a quantum degenerate regime. We observe a reduction of two- and three-body spatial correlations and infer that the atoms are directly cooled into a highly correlated excited metastable state, known as a super-Tonks-Girardeau gas.
View Article and Find Full Text PDFWe demonstrate cavity cooling of all motional degrees of freedom of an atomic ensemble using light that is far detuned from the atomic transitions by several gigahertz. The cooling is achieved by cavity-induced frequency-dependent asymmetric enhancement of the atomic emission spectrum, thereby extracting thermal kinetic energy from the atomic system. Within 100 ms, the atomic temperature is reduced from 200 to 10 μK, where the final temperature is mainly limited by the linewidth of the cavity.
View Article and Find Full Text PDFDeterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons.
View Article and Find Full Text PDFWe report the continuous and partially nondestructive measurement of optical photons. For a weak light pulse traveling through a slow-light optical medium (signal), the associated atomic-excitation component is detected by another light beam (probe) with the aid of an optical cavity. We observe strong correlations of g_{sp}^{(2)}=4.
View Article and Find Full Text PDFWe propose a versatile and efficient method to generate a broad class of complex entangled states of many atoms via the detection of a single photon. For an atomic ensemble contained in a strongly coupled optical cavity illuminated by weak single- or multifrequency light, the atom-light interaction entangles the frequency spectrum of a transmitted photon with the collective spin of the atomic ensemble. Simple time-resolved detection of the transmitted photon then projects the atomic ensemble into a desired pure entangled state.
View Article and Find Full Text PDF