Publications by authors named "Yiheng Dai"

Regulating chemical drug's responsiveness to gamma radiation is crucial for achieving better therapeutic effects in cancer treatment. Most research focused on thermodynamic chemical structure design, while little attention was paid to kinetic regulate strategy, which possesses greater universality and security. In this study, we achieved a kinetic-based regulate strategy of gamma radiation reaction, through the construction of microphase environment during polymerization of polytelluoxane (PTeO).

View Article and Find Full Text PDF

Cuproptosis, a cell death process caused by copper ions, is mediated by protein lipidation related to lipoic acid metabolism. There is a close connection between cuproptosis and the progression and prognosis of various tumors. Here, we identified lipoyltransferase 1 (LIPT1), a key gene related to cuproptosis, was downregulated in bladder cancer (BLCA) and was associated with unfavorable patient prognosis.

View Article and Find Full Text PDF

Dysregulation of cholesterol homeostasis occurs in multiple types of tumors and promotes cancer progression. Investigating the specific processes that induce abnormal cholesterol metabolism could identify therapeutic targets to improve cancer treatment. In this investigation, we observed upregulation of 7-dehydrocholesterol reductase (DHCR7), a vital enzyme involved in the synthesis of cholesterol, within bladder cancer tissues in comparison to normal tissues, which was correlated with increased bladder cancer metastasis.

View Article and Find Full Text PDF

Background: Early-onset sepsis (EOS) is a serious illness that affects preterm newborns, and delayed antibiotic initiation may increase the risk of adverse outcomes.

Purpose: The objective of this study was to examine the present time of antibiotic administration in preterm infants with suspected EOS and the factors that contribute to delayed antibiotic initiation.

Methods: In this retrospective study in China, a total of 82 early preterm infants with suspected EOS between December 2021 and March 2023 were included.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is the prevailing histological subtype of renal cell carcinoma and has unique metabolic reprogramming during its occurrence and development. Cell senescence is one of the newly identified tumor characteristics. However, there is a dearth of methodical and all-encompassing investigations regarding the correlation between the broad-ranging alterations in metabolic processes associated with aging and ccRCC.

View Article and Find Full Text PDF

Machine learning (ML) is increasingly becoming a common tool in computational chemistry. At the same time, the rapid development of ML methods requires a flexible software framework for designing custom workflows. MLatom 3 is a program package designed to leverage the power of ML to enhance typical computational chemistry simulations and to create complex workflows.

View Article and Find Full Text PDF

Bladder cancer (BLCA) is the most frequent malignant tumor of the genitourinary system. Postoperative chemotherapy drug perfusion and chemotherapy are important means for the treatment of BLCA. However, once drug resistance occurs, BLCA develops rapidly after recurrence.

View Article and Find Full Text PDF

Inorganic molecular cages are emerging multifunctional molecular-based platforms with the unique merits of rigid skeletons and inherited properties from constituent metal ions. However, the sensitive coordination bonds and vast synthetic space have limited their systematic exploration. Herein, two giant cage-like clusters featuring the organic ligand-directed inorganic skeletons of Ni[LaNi(IDA)(OH)(CO)(HO)]·(NO)·(HO) (, 5 × 5 × 3 - CO) and [LaNi(IDA)(OH)(CO)(NO)(HO)]·(NO)·(HO) (, 5 × 5 × 5 - CO) were discovered by a high-throughput synthetic search.

View Article and Find Full Text PDF

Visualizing polymer chain growth is always a hot topic for tailoring structure-function properties in polymer chemistry. However, current characterization methods are limited in their ability to differentiate the degree of polymerization in real-time without isolating the samples from the reaction vessel, let alone to detect insoluble polymers. Herein, a reliable relationship is established between polymer chain growth and fluorescence properties through polymerization induced emission.

View Article and Find Full Text PDF

Orogastric (OG) and nasogastric (NG) tubes are frequently used in the NICU. Obtaining a relatively accurate estimated length before insertion could significantly reduce complications. While previous studies have mainly focused on the NG tube, OG tubes are more commonly used in China.

View Article and Find Full Text PDF

Objective: To investigate the clinical characteristics and outcomes of newborns infected with coronavirus disease 2019 (COVID-19) during the Omicron wave.

Methods: From December 1, 2022, to January 4, 2023, clinical data were collected from neonates with COVID-19 who were admitted to 10 hospitals in Foshan City, China. Their epidemiological histories, clinical manifestations and outcomes were analysed.

View Article and Find Full Text PDF

Background: There are many difficulties and uncertainties in the early diagnosis of neonatal sepsis. The aim of this study was to determine whether albumin (ALB) is useful for the early diagnosis of neonatal sepsis using ALB, C-reactive protein (CRP) and procalcitonin (PCT) together.

Methods: ALB, CRP, PCT and white blood cell (WBC) data from 732 patients with neonatal sepsis and 1317 neonatal infection patients hospitalized in Foshan Maternal and Child Health Hospital from 2011 to 2022 were collected.

View Article and Find Full Text PDF

Background & Aims: Gut immaturity leads to feeding difficulties in very preterm infants (<32 weeks gestation at birth). Maternal milk (MM) is the optimal diet but often absent or insufficient. We hypothesized that bovine colostrum (BC), rich in protein and bioactive components, improves enteral feeding progression, relative to preterm formula (PF), when supplemented to MM.

View Article and Find Full Text PDF

Polymerization inside living cells provides chemists with a multitude of possibilities to modulate cell activities. Considering the advantages of hyperbranched polymers, such as a large surface area for target sites and multilevel branched structures for resistance to the efflux effect, we reported a hyperbranched polymerization in living cells based on the oxidative polymerization of organotellurides and intracellular redox environment. The intracellular hyperbranched polymerization was triggered by reactive oxygen species (ROS) in the intracellular redox microenvironment, effectively disrupting antioxidant systems in cells by an interaction between Te (+4) and selenoproteins, thus inducing selective apoptosis of cancer cells.

View Article and Find Full Text PDF

Risks associated with preterm birth are unevenly distributed across all gestations. At earlier gestational ages, complications such as necrotizing enterocolitis (NEC) and late-onset sepsis (LOS) conditions are significantly more common and are associated with a shift in the composition of the gut microbiome. Conventional bacterial culture techniques demonstrate that the colonization of the gut microbiota of preterm infants differs significantly from that of healthy-term infants.

View Article and Find Full Text PDF

Molecules with strong two-photon absorption (TPA) are important in many advanced applications such as upconverted laser and photodynamic therapy, but their design is hampered by the high cost of experimental screening and accurate quantum chemical (QC) calculations. Here a systematic study is performed by collecting an experimental TPA database with ≈900 molecules, analyzing with interpretable machine learning (ML) the key molecular features explaining TPA magnitudes, and building a fast ML model for predictions. The ML model has prediction errors of similar magnitude compared to experimental and affordable QC methods errors and has the potential for high-throughput screening as additionally validated with the new experimental measurements.

View Article and Find Full Text PDF

Background: Preterm-associated complications remain the main cause of neonatal death. Survivors face the challenges of short- and long-term complications. Among all complications, bronchopulmonary dysplasia (BPD) remains the first important cause of neonatal mortality and morbidity.

View Article and Find Full Text PDF

With the increase in extremely low birth weight (ELBW) infants, their outcome attracted worldwide attention. However, in China, the related studies are rare. The hospitalized records of ELBW infants discharged from twenty-six neonatal intensive care units in Guangdong Province of China during 2008-2017 were analyzed.

View Article and Find Full Text PDF

The development of underwater remote stimulus-responsive self-healing polymer materials for applications in inaccessible and urgent situations is very challenging because water can readily disturb traditional noncovalent bonds and absorb heat, UV light, IR light, and electromagnetic wave energy at the wave band of micrometers and millimeters. Herein, visible-light-responsive diselenide bonds are employed as the healing moieties to produce a water-enhanced and remote self-healing elastomer triggered by a blue laser, which possesses excellent underwater transmission capability. During healing, the strain at break reaches ∼200% in 5 min and its toughness almost fully recovers within 1 h, which is estimated to be the fastest reported to date for healing silicone elastomers with a healing efficiency above 90%.

View Article and Find Full Text PDF

Chemodynamic therapy has been appealing for effective cancer treatment. Particularly, Fenton-like reactions catalyzed by Cu-based nanoparticles showed promising prospects. Herein, we fabricated copper-selenocysteine quantum dots (Cu-Sec QDs) with the majority of Cu by a facile and robust thermal titration process.

View Article and Find Full Text PDF

Objectives: To investigate the clinical treatment outcomes and the changes of the outcomes over time in extremely preterm twins in Guangdong Province, China.

Methods: A retrospective analysis was performed for 269 pairs of extremely preterm twins with a gestational age of <28 weeks who were admitted to the department of neonatology in 26 grade A tertiary hospitals in Guangdong Province from January 2008 to December 2017. According to the admission time, they were divided into two groups: 2008-2012 and 2013-2017.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a prevalent cancer in males, with high incidence and mortality. Recent studies have shown the crucial role of long non-coding RNA (lncRNA) in PCa. Here, we aimed to explore the functional roles and inner mechanisms of lncRNA CCAT1 in PCa cells.

View Article and Find Full Text PDF

Intracellular polymerization is an emerging technique that can potentially modulate cell behavior, but remains challenging because of the complexity of the cellular environment. Herein, taking advantage of the chemical properties of organotellurides and the intracellular redox environment, we develop a novel oxidative polymerization reaction that can be conducted in cells without external stimuli. We demonstrate that this polymerization reaction is triggered by the intracellular reactive oxygen species (ROS), thus selectively proceeding in cancer cells and inducing apoptosis via a unique self-amplification mechanism.

View Article and Find Full Text PDF

ZrZnO is active in catalyzing carbon dioxide (CO) hydrogenation to methanol (MeOH) via a synergy between ZnO and ZrO. Here we report the construction of Zn-O-Zr sites in a metal-organic framework (MOF) to reveal insights into the structural requirement for MeOH production. The Zn-O-Zr sites are obtained by postsynthetic treatment of Zr(μ-O)(μ-OH) nodes of MOF-808 by ZnEt and a mild thermal treatment to remove capping ligands and afford exposed metal sites for catalysis.

View Article and Find Full Text PDF

Discovery and optimization of new catalysts can be potentially accelerated by efficient data analysis using machine-learning (ML). In this paper, we record the process of searching for additives in the electrochemical deposition of Cu catalysts for CO reduction (CORR) using ML, which includes three iterative cycles: "experimental test; ML analysis; prediction and redesign". Cu catalysts are known for CORR to obtain a range of products including C (CO, HCOOH, CH, CHOH) and C (CH, CH, CHOH, CHOH).

View Article and Find Full Text PDF