Publications by authors named "Yih-wen Chen"

Purpose: Tiragolumab is an immunoglobulin G1 monoclonal antibody targeting the immune checkpoint T cell immunoreceptor with immunoglobulin and immunoreceptor ITIM domains. Targeting multiple immune pathways may improve anti-tumor responses. The phase I YP42514 study assessed the pharmacokinetics (PK), safety, and preliminary efficacy of tiragolumab plus atezolizumab in Chinese patients with advanced solid tumors.

View Article and Find Full Text PDF

Obesity and the metabolic syndrome have evolved to be major health issues throughout the world. Whether loss of genome integrity contributes to this epidemic is an open question. DNA polymerase η (pol η), encoded by the xeroderma pigmentosum (XP-V) gene, plays an essential role in preventing cutaneous cancer caused by UV radiation-induced DNA damage.

View Article and Find Full Text PDF

Cockayne syndrome (CS) is a human DNA repair-deficient disease that involves transcription coupled repair (TCR), in which three gene products, Cockayne syndrome A (CSA), Cockayne syndrome B (CSB), and ultraviolet stimulated scaffold protein A (UVSSA) cooperate in relieving RNA polymerase II arrest at damaged sites to permit repair of the template strand. Mutation of any of these three genes results in cells with increased sensitivity to UV light and defective TCR. Mutations in CSA or CSB are associated with severe neurological disease but mutations in UVSSA are for the most part only associated with increased photosensitivity.

View Article and Find Full Text PDF

Purpose: The development of resistance against anticancer drugs has been a persistent clinical problem for the treatment of locally advanced malignancies in the head and neck mucosal derived squamous cell carcinoma (HNSCC). Recent evidence indicates that the DNA translesion synthesis (TLS) polymerase η (Pol η; hRad30a gene) reduces the effectiveness of gemcitabine/cisplatin. The goal of this study is to examine the relationship between the expression level of Pol η and the observed resistance against these chemotherapeutic agents in HNSCC, which is currently unknown.

View Article and Find Full Text PDF

The 4'-thio-β-D-arabinofuranosylcytosine (T-araC) is a newly developed nucleoside analog that has shown promising activity against a broad spectrum of human solid tumors in both cellular and xenograft mice models. TaraC shares similar structure with another anticancer deoxycytidine analog, β-D-arabinofuranosylcytosine (araC, cytarabine), which has been used in clinics for the treatment of acute myelogenous leukemia but has a very limited efficacy against solid tumors. T-araC exerts its anticancer activity mainly by inhibiting replicative DNA polymerases from further extension after its incorporation into DNA.

View Article and Find Full Text PDF

D-501036 is a promising anti-cancer compound that exhibits potent anti-proliferative activity against various types of human cancers through the induction of double strand DNA breaks. To determine drug resistance mechanism related to this class of DNA-damaging agents, a KB-derived D-501036-resistant cell line (S4) was established. Results showed that S4 cells exhibit enhanced DNA rejoining ability as compare to KB cells, through up-regulation of the non-homologous end joining activity.

View Article and Find Full Text PDF

B7-H3, an immunoregulatory protein, is known to play a role in tumor progression. In many cancer types, observed correlations between high B7-H3 expression and poor prognosis have been attributed to involvement in antitumor immunity. However, here we demonstrate a nonimmunological alternative function of B7-H3 in cancer metastasis.

View Article and Find Full Text PDF

In many types of cancer, the expression of the immunoregulatory protein B7-H3 has been associated with poor prognosis. Previously, we observed a link between B7-H3 and tumor cell migration and invasion, and in present study, we have investigated the role of B7-H3 in chemoresistance in breast cancer. We observed that silencing of B7-H3, via stable short hairpin RNA or transient short interfering RNA transfection, increased the sensitivity of multiple human breast cancer cell lines to paclitaxel as a result of enhanced drug-induced apoptosis.

View Article and Find Full Text PDF

Human DNA polymerase eta (pol eta) can replicate across UV-induced pyrimidine dimers, and defects in the gene encoding pol eta result in a syndrome called xeroderma pigmentosum variant (XP-V). XP-V patients are prone to the development of cancer in sun-exposed areas, and cells derived from XP-V patients demonstrate increased sensitivity to UV radiation and a higher mutation rate compared with wild-type cells. pol eta has been shown to replicate across a wide spectrum of DNA lesions introduced by environmental or chemotherapeutic agents, or during nucleotide starvation, suggesting that the biological roles for pol eta are not limited to repair of UV-damaged DNA.

View Article and Find Full Text PDF

The monoclonal antibody (mAb) 376.96 has been used for detection of micrometastatic tumor cells due to its high binding specificity for a wide range of tumor cells, but the identity and function of its target antigen have not been known. Here, using immunoprecipitation and siRNA technology, we demonstrate that the antigen is the human 4Ig-B7H3 (4Ig-hB7H3) protein, previously known as an immunoregulatory protein in immune cells.

View Article and Find Full Text PDF

Molecular mechanisms underlying the different capacity of two in vivo selected human melanoma cell variants to form experimental metastases were studied. The doubling times of the FEMX-I and FEMX-V cell sublines in vitro were 15 and 25 h, respectively. The invasive capacity of FEMX-I cells was 8-fold higher than FEMX-V cells, and the time to form approximately 10 mm s.

View Article and Find Full Text PDF

Genetic defects in polymerase eta (pol eta; hRad30a gene) result in xeroderma pigmentosum variant syndrome (XP-V), and XP-V patients are sensitive to sunlight and highly prone to cancer development. Here, we show that pol eta plays a significant role in modulating cellular sensitivity to DNA-targeting anticancer agents. When compared with normal human fibroblast cells, pol eta-deficient cells derived from XP-V patients were 3-fold more sensitive to beta-d-arabinofuranosylcytosine, gemcitabine, or cis-diamminedichloroplatinum (cisplatin) single-agent treatments and at least 10-fold more sensitive to the gemcitabine/cisplatin combination treatment, a commonly used clinical regimen for treating a wide spectrum of cancers.

View Article and Find Full Text PDF

Studies have demonstrated that receptor-mediated signaling, receptor/antigen complex trafficking, and major histocompatibility complex class II compartments (MIIC) are critically related to antigen presentation to CD4+ T cells. In this study, we investigated the role of protein kinase C (PKC) in FcalphaR/gammagamma (CD89, human IgA receptor)-mediated internalization of immune complexes and subsequent antigen presentation. The classical and novel PKC inhibitor, Calphostin C, inhibits FcalphaR-mediated antigen presentation and interaction of MIIC and cargo vesicle (receptor and antigen).

View Article and Find Full Text PDF

The human IgA Fc receptor (FcalphaR, CD89) triggers several important physiological functions, including phagocytosis, NADPH oxidase activation and antigen presentation. Efforts are underway to delineate FcalphaR signal-transduction pathways that control these functions. In a previous study, we demonstrated that cross-linking of FcalphaR increased its partitioning into membrane glycolipid rafts and was accompanied by gamma-chain-dependent recruitment and phosphorylation of the tyrosine kinases Lck/Yes-related novel protein tyrosine kinase (Lyn) and Bruton's tyrosine kinase (Btk).

View Article and Find Full Text PDF