Publications by authors named "Yih-Guang Leu"

This paper proposes a novel method of online modeling and control via the Takagi-Sugeno (T-S) fuzzy-neural model for a class of uncertain nonlinear systems with some kinds of outputs. Although studies about adaptive T-S fuzzy-neural controllers have been made on some nonaffine nonlinear systems, little is known about the more complicated uncertain nonlinear systems. Because the nonlinear functions of the systems are uncertain, traditional T-S fuzzy control methods can model and control them only with great difficulty, if at all.

View Article and Find Full Text PDF

In this paper, an observer-based direct adaptive fuzzy-neural control scheme is presented for nonaffine nonlinear systems in the presence of unknown structure of nonlinearities. A direct adaptive fuzzy-neural controller and a class of generalized nonlinear systems, which are called nonaffine nonlinear systems, are instead of the indirect one and affine nonlinear systems given by Leu et al. By using implicit function theorem and Taylor series expansion, the observer-based control law and the weight update law of the fuzzy-neural controller are derived for the nonaffine nonlinear systems.

View Article and Find Full Text PDF

In this paper, we propose a novel design of a GA-based output-feedback direct adaptive fuzzy-neural controller (GODAF controller) for uncertain nonlinear dynamical systems. The weighting factors of the direct adaptive fuzzy-neural controller can successfully be tuned online via a GA approach. Because of the capability of genetic algorithms (GAs) in directed random search for global optimization, one is used to evolutionarily obtain the optimal weighting factors for the fuzzy-neural network.

View Article and Find Full Text PDF