Fundamental understanding of ion electroadsorption processes in porous electrodes on a molecular level provides important guidelines for next-generation energy storage devices like electric double layer capacitors (EDLCs). Porous carbons functionalized by heteroatoms show enhanced capacitive performance, but the underlying mechanism is still elusive, due to the lack of reliable tools to precisely identify multiple N species and establish clear structure property relations. Here, we use advanced analytical techniques such as low-temperature solid-state NMR (ssNMR) and electrochemical quartz crystal microbalance (EQCM) to relate the complex nitrogen functionalities to the charging mechanisms and capacitive performance.
View Article and Find Full Text PDFThe development of the basic understanding of the charge storage mechanisms in electrodes for energy storage applications needs deep characterization of the electrode/electrolyte interface. In this work, we studied the charge of the double layer capacitance at single layer graphene (SLG) electrode used as a model material, in neat (EMIm-TFSI) and solvated (with acetonitrile) ionic liquid electrodes. The combination of electrochemical impedance spectroscopy and gravimetric electrochemical quartz crystal microbalance (EQCM) measurements evidence that the presence of solvent drastically increases the charge carrier density at the SLG/ionic liquid interface.
View Article and Find Full Text PDFThe urgent need for efficient energy storage devices has stimulated a great deal of research on electrochemical double layer capacitors (EDLCs). This review aims at summarizing the recent progress in nanoporous carbons, as the most commonly used EDLC electrode materials in the field of capacitive energy storage, from the viewpoint of materials science and characterization techniques. We discuss the key advances in the fundamental understanding of the charge storage mechanism in nanoporous carbon-based electrodes, including the double layer formation in confined nanopores.
View Article and Find Full Text PDFResearch (Wash D C)
November 2019
Recently, multivalent aqueous calcium-ion batteries (CIBs) have attracted considerable attention as a possible alternative to Li-ion batteries. However, traditional Ca-ion storage materials show either limited rate capabilities and poor cycle life or insufficient specific capacity. Here, we tackle these limitations by exploring materials having a large interlayer distance to achieve decent specific capacities and one-dimensional architecture with adequate Ca-ion passages that enable rapid reversible (de)intercalation processes.
View Article and Find Full Text PDFGraphene-based carbon materials are promising candidates for electrical double-layer (EDL) capacitors, and there is considerable interest in understanding the structure and properties of the graphene/electrolyte interface. Here, electrochemical impedance spectroscopy (EIS) and electrochemical quartz crystal microbalance (EQCM) are used to characterize the ion fluxes and adsorption on single-layer graphene in neat ionic liquid (EMI-TFSI) electrolyte. It is found that a positively charged ion-species desorption and ion reorganization dominate the double-layer charging during positive and negative polarizations, respectively, leading to the increase in EDL capacitance with applied potential.
View Article and Find Full Text PDF20 nm ZnO nanoparticles are used to fabricate the mesoporous photoanode of the CdS/CdSe quantum dot-sensitized solar cells by the simple doctor blade method. A maximum power conversion efficiency of 4.46% has been achieved, which indicated exciting prospects for ZnO nanoparticle based quantum dot-sensitized solar cells.
View Article and Find Full Text PDF