, commonly known as the spiny frog, is an economically valued amphibian in China prized for its tender meat and nutritional value. This species exhibits marked sexual dimorphism, most notably the prominent spiny structures on males that are pivotal for mating success and species identification. The spines of exhibit strong seasonal variation, changing significantly with the reproductive cycle, which typically spans from April to October.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Hybrid supercapacitors (HSCs) with facile integration and high process compatibility are considered ideal power sources for portable consumer electronics. However, as a crucial component for storing energy, traditional thin-film electrodes exhibit low energy density. Although increasing the thickness of thin films can enhance the energy density of the electrodes, it gives rise to issues such as poor mechanical stability and long electron/ion transport pathways.
View Article and Find Full Text PDFThe low mechanical reliability and integration failure are key challenges hindering the commercialization of geometrically flexible batteries. This work proposes that the failure of directly integrating flexible batteries using traditional rigid adhesives is primarily due to the mismatch between the generated stress at the adhesive/substrate interface, and the maximum allowable stress. Accordingly, a stress redistribution adhesive layer (SRAL) strategy is conceived by using elastic adhesive to redistribute the generated stress.
View Article and Find Full Text PDFLi-rich Mn-based layered oxides (LLOs) are one of the most promising cathode materials, which have exceptional anionic redox activity and a capacity that surpasses 250 mA h/g. However, the change from a layered structure to a spinel structure and unstable anionic redox are accompanied by voltage attenuation, poor rate performance, and problematic capacity. The technique of stabilizing the crystal structure and reducing the surface oxygen activity is proposed in this paper.
View Article and Find Full Text PDFDeep eutectic solvents (DESs) have attracted extensive research for their potential applications as leaching solvent to recycle valuable metal elements from spent lithium ion batteries (LIBs). Despite various advantages like being economical and green, the full potential of conventional binary DES has not yet been harnessed because of the kinetics during leaching. Herein, we consider the fundamental rate-determining-step (RDS) in conventional binary DES and attempt to design ternary DES, within which the chemical reaction kinetics and diffusion kinetics can be regulated to maximize the overall leaching rate.
View Article and Find Full Text PDFBiotechnol J
December 2019
Fluorescence imaging, as a commonly used scientific tool, is widely applied in various biomedical and material structures through visualization technology. Highly selective and sensitive luminescent biological probes, as well as those with good water solubility, are urgently needed for biomedical research. In contrast to the traditional aggregation-caused quenching of fluorescence, in the unique phenomenon of aggregation-induced emission (AIE), the individual luminogens have extremely weak or no emissivity because they each have free intramolecular motion; however, when they form aggregates, these components immediately "light up".
View Article and Find Full Text PDF