Publications by authors named "Yifeng Ni"

Background: Since its first application in 1978, the vascularized free iliac flap (VFIF) has gradually become a mainstay for tissue defect reconstruction. However, the complications associated with harvesting the bone flap and its corresponding reconstruction surgery cannot be overlooked.

Methods: We conducted a narrative review through literature search to identify the types, incidence, influencing factors, measurement methods, and treatment approaches of complications related to DCIA-related VFIF.

View Article and Find Full Text PDF

Oral defects lead to a series of function disorders, severely threatening the patients' health. Although injectable hydrogels are widely studied in tissue regeneration, their mechanical performance is usually stationary after implant, without further self-adaption toward the microenvironment. Herein, an injectable hydrogel with programmed mechanical kinetics of instant gelation and gradual self-strengthening along with outstanding biodegradation ability is developed.

View Article and Find Full Text PDF

A copper-catalyzed reaction of benzoxazinanones with -aryl sulfilimines has been developed, providing 2-ethynyl-benzoimidazoles in good to excellent yields (up to 98%) under mild reaction conditions. Importantly, the reaction proceeds an abnormal skeletal rearrangement and annulation process, rather than an expected (4 + 1) annulation.

View Article and Find Full Text PDF

When droplets are brought into contact and coalesced on a superhydrophobic surface, the kinetic energy converted from the surface energy enables the merged droplet to jump. Current studies mainly focus on the microstructure of surfaces and the properties of droplets that influence the jumping dynamics. Here, by means of molecular dynamics, we investigate the coalescence-induced jumping of nanodroplets on soft substrates.

View Article and Find Full Text PDF

Bacterial infections from biomedical devices pose a great threat to the health of humans and thus place a heavy burden on society. Therefore, developing efficient antibacterial surfaces has attracted much attention. However, it is a challenge to identify or develop a combination that efficiently integrates multiple functions topological tailoring and on-demand function-switch non-contact and noninvasive stimuli.

View Article and Find Full Text PDF

Bacteria in the external environment inevitably invade the wound and subsequently colonize the wound surface during surgery and biomedical operations, which slows down the process of wound healing and tissue repair; this poses a significant threat to human health. Therefore, the development of an intelligent antibacterial surface has become the focus of research in the field of antimicrobial strategies, which has important social and economic significance. Here, we present a simple approach of producing an ionic interaction-driven anionic activation substratum which is then functionalized with cationic molecules through coulombic interactional immobilization.

View Article and Find Full Text PDF

The capability of damping mechanical energy in polycrystalline metals depends on the activities of defects such as dislocation and grain boundary (GB). However, operating defects has the opposite effect on strength and damping capacity. In the quest for high damping metals, maintaining the level of strength is desirable in practice.

View Article and Find Full Text PDF

Transfer printing has been playing a crucial role in the fabrication of various functional devices. In spite of the extensive progress in technology, challenges are remaining, in the aspects of accuracy, efficiency, and adaptivity. Here, we propose a reversible transfer printing technique of tailoring adhesion by selectively stretching the surfaces.

View Article and Find Full Text PDF

Mesenchymal stem cells-derived small extracellular vesicles (MSCs-sEV) have shown promising prospects as a cell-free strategy for bone tissue regeneration. Here, a bioactive MSCs-sEV-loaded electrospun silk fibroin/poly(ε-caprolactone) (SF/PCL) scaffold was synthesized via a mussel-inspired immobilization strategy assisted by polydopamine (pDA). This pDA modification endowed the as-prepared scaffold with high loading efficiency and sustained release profile of sEV.

View Article and Find Full Text PDF

Development of biological dressings has received widespread attentions due to their good breathability, biocompatibility, wettability, and the ability to absorb wound exudate without sticking to the wound. However, current proposed antibacterial hydrogels are limited antibacterial ability, short service life and insufficient biocompatibility, which are still challenging to address intricate practical applications. Here we develop a cationic peptide-based, salt-responsive hydrogel dressing with triple functions of antifouling, bactericidal, and bacterial release by combining ε-poly-l-lysine, poly(ethylene glycol) diglycidyl ether, and poly(DVBAPS-co-GMA) via a one-pot method.

View Article and Find Full Text PDF

Development of smart switchable surfaces to solve the inevitable bacteria attachment and colonization has attracted much attention; however, it proves very challenging to achieve on-demand regeneration for noncontaminated surfaces. We herein report a smart, host-guest interaction-mediated photo/temperature dual-controlled antibacterial surface, topologically combining stimuli-responsive polymers with nanobactericide. From the point of view of long-chain polymer design, the peculiar hydration layer generated by hydrophilic poly(2-hydroxyethyl methacrylate) (polyHEMA) segments severs the route of initial bacterial attachment and subsequent proliferation, while the synergistic effect on chain conformation transformation poly(-isopropylacrylamide) (polyNIPAM) and guest complex dissociation azobenzene/cyclodextrin (Azo/CD) complex greatly promotes the on-demand bacterial release in response to the switch of temperature and UV light.

View Article and Find Full Text PDF

Hydrophobic micro-porous membrane such as polyvinylidene fluoride (PVDF) with excellent thermal-/chemical-stability and low surface energy has received extensive attention in industrial water treatment and sustainable energy conversion. However, undesirable contaminants caused by inevitable proteins or microorganisms adhesion may lead to a rapid loss of separation efficiency, which significantly deteriorate their porous structures and eventually limit their practical performance. Herein, we present a scalable approach for fabricating comb-like copolymer modified PVDF membranes (PVDF-PN@AgNPs) that prevent bacteria from proliferating on the surface and temperature-controlled release of adhered contaminants.

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-α), one of the pro-inflammatory factors in osteoporosis, has a strong enhancement effect on osteoclastogenesis and disruption of osteoblast survival and function. JAK2 participates in a wide range of biological processes, including bone homeostasis, but its function in osteoblast survival in inflammatory environments remains unknown. In this study, flow cytometry and immunofluorescence staining of LC3B were performed under TNF-α stimulation in MC3T3-E1 cells.

View Article and Find Full Text PDF

Connective tissue growth factor (CTGF/CCN2) is a secreted protein modulating various biological processes, such as proliferation, differentiation, and survival. Tumor necrosis factor-α (TNF-α), known as a proinflammatory factor, negatively regulates osteoblast differentiation and survival. However, the potential mechanisms of CCN2 in TNF-α-induced osteoblast apoptosis are not fully understood.

View Article and Find Full Text PDF

Exosomes are extracellular membranous nanovesicles that mediate local and systemic cell-to-cell communication by transporting functional molecules, such as proteins, into target cells, thereby affecting the behavior of receptor cells. Exosomes originating from adipose-derived mesenchymal stem cells (ADSCs) are considered a multipotent and abundant therapeutic tool for tissue injury. To investigate ADSC-secreted exosomes and their potential function in tissue repair, we isolated exosomes from the supernatants of ADSCs via ultracentrifugation, characterized them via transmission electron microscopy, nanoparticle tracking analysis, and Western blot analysis.

View Article and Find Full Text PDF

Background: Multiple acyl-CoA dehydrogenase deficiency (MADD) is a riboflavin-responsive lipid-storage myopathy caused by mutations in the EFTA, EFTB or ETFDH genes. We report a Chinese family of Southern Min origin with two affected siblings with late-onset riboflavin-responsive MADD due to a homozygous c.250G > A EFTDH mutation and review the genetic epidemiology of the c.

View Article and Find Full Text PDF

Wound and fracture healing are affected by exposure to nicotine and other compounds in cigarettes. This study examined the effects of exposure to low-dose nicotine at sub-toxic concentrations on the proliferation, differentiation and migration of bone marrow stem cells (BMSCs) in vitro and their homing to fracture site in C57BL/6 mice. BMSCs were investigated in cells treated with or without nicotine (1 μM to 1 mM).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9o9o1jj0smcdqog5ets3599e07qef0vg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once