Publications by authors named "Yifat Berkov-Zrihen"

The epigenetic DNA modification 5-hydroxymethylcytosine (5-hmC) is important for the regulation of gene expression during development and in tumorigenesis. 5-hmC can be selectively glycosylated by T4 β-glucosyltransferase (β-GT); introduction of an azide on the attached sugar provides a chemical handle for isolation or fluorescent tagging of 5-hmC residues by click chemistry. This approach has not been broadly adopted because of the challenging synthesis and limited commercial availability of the glycosylation substrate, 6-deoxy-6-azido-α-D-glucopyranoside.

View Article and Find Full Text PDF

Antimicrobial cationic amphiphiles derived from aminoglycoside pseudo-oligosaccharide antibiotics interfere with the structure and function of bacterial membranes and offer a promising direction for the development of novel antibiotics. Herein, we report the design and synthesis of cationic amphiphiles derived from the pseudo-trisaccharide aminoglycoside tobramycin and its pseudo-disaccharide segment nebramine. Antimicrobial activity, membrane selectivity, mode of action, and structure-activity relationships were studied.

View Article and Find Full Text PDF

A short site-selective strategy for the activation and derivatization of alcohols of the clinically important aminoglycoside tobramycin is reported. The choice of amine protecting group affected the site-selective conversion of secondary alcohols of tobramycin into leaving groups. Temperature-dependent, chemoselective sequential nucleophilic displacements resulted in hetero- and homodithioether tobramycin-based cationic amphiphiles that demonstrated marked antimicrobial activity and impressive membrane selectivity.

View Article and Find Full Text PDF

In this study, we describe the synthesis of a full set of homo- and heterodimers of three intact structures of different ribosome-targeting antibiotics: tobramycin, clindamycin, and chloramphenicol. Several aspects of the biological activity of the dimeric structures were evaluated including antimicrobial activity, inhibition of in vitro bacterial protein translation, and the effect of dimerization on the action of several bacterial resistance mechanisms that deactivate tobramycin and chloramphenicol. This study demonstrates that covalently linking two identical or different ribosome-targeting antibiotics may lead to (i) a broader spectrum of antimicrobial activity, (ii) improved inhibition of bacterial translation properties compared to that of the parent antibiotics, and (iii) reduction in the efficacy of some drug-modifying enzymes that confer high levels of resistance to the parent antibiotics from which the dimers were derived.

View Article and Find Full Text PDF

A collection of paromomycin-based di-alkylated cationic amphiphiles differing in the lengths of their aliphatic chain residues were designed, synthesized, and evaluated against 14 Gram positive pathogens that are known to cause skin infections. Paromomycin derivatives that were di-alkylated with C7 and C8 linear aliphatic chains had improved antimicrobial activities relative to the parent aminoglycoside as well as to the clinically used membrane-targeting antibiotic gramicidin D; several novel derivatives were at least 16-fold more potent than the parent aminoglycoside paromomycin. Comparison between a di-alkylated and a mono-alkylated paromomycin indicated that the di-alkylation strategy leads to both an improvement in antimicrobial activity and to a dramatic reduction in undesired red blood cell hemolysis caused by many aminoglycoside-based cationic amphiphiles.

View Article and Find Full Text PDF

Amongst the many synthetic aminoglycoside analogues that were developed to regain the efficacy of this class of antibiotics against resistant bacterial strains, the 1-N-acylated analogues are the most clinically used. In this study we demonstrate that 6'-N-acylation of the clinically used compound tobramycin and 6'''-N-acylation of paromomycin result in derivatives resistant to deactivation by 6'-aminoglycoside acetyltransferase (AAC(6')) which is widely found in aminoglycoside resistant bacteria. When tested against AAC(6')- or AAC(3)-expressing bacteria as well as pathogenic bacterial strains, some of the analogues demonstrated improved antibacterial activity compared to their parent antibiotics.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0i0asaf6359v6dndbupohs5ed395kr4i): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once