Vimentin, a type III intermediate filament (IF) protein, is well-recognized for its role at the intersection of structural biology and cellular dynamics, influencing various pathways that determine cell fate and function. While these functions have been extensively characterized, there is still limited understanding of vimentin's broader impact beyond its traditional cytoskeletal roles in regulating a spectrum of cellular processes. This review explores the novel and unconventional roles of vimentin, with a focus on its extracellular functions, membrane receptor properties, and regulatory influence on gene expression and cellular metabolism.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Hepatitis C virus (HCV) is a major human pathogen causing liver diseases. Although direct-acting antiviral agents effectively inhibit HCV infection, cell-cell transmission remains a critical venue for HCV persistence in vivo. However, the underlying mechanism of how HCV spreads intercellularly remains elusive.
View Article and Find Full Text PDFSorghum faces significant production challenges due to drought stress. Melatonin has been demonstrated to play a crucial role in coping with stresses in plants. This study investigated the effect of exogenous melatonin on the sorghum seedling growth, photosynthetic capacity, and antioxidant system under drought stress.
View Article and Find Full Text PDFTactile sensing has become indispensable for contact-rich dynamic robotic manipulation tasks. It provides robots with a better understanding of the physical environment, which is a vital supplement to robotic vision perception. Compared with other existing tactile sensors, vision-based tactile sensors (VBTSs) stand out for augmenting the tactile perception capabilities of robotic systems, owing to superior spatial resolution and cost-effectiveness.
View Article and Find Full Text PDFEmerg Microbes Infect
December 2024
Lassa virus (LASV), a risk-group 4 pathogen, must be handled in biosafety level-4 (BSL-4) conditions, thereby limiting its research and antiviral development. Here, we developed a novel LASV reverse genetics system which, to our knowledge, is the first to study the complete LASV life cycle under BSL-2 conditions. Viral particles can be produced efficiently when LASV minigenomic RNA harbouring minimal viral -elements and reporter genes is transfected into a helper cell line stably expressing viral NP, GP, Z and L proteins.
View Article and Find Full Text PDFThe cytoskeleton, which includes actin filaments, microtubules, and intermediate filaments, is one of the most important networks in the cell and undertakes many fundamental life activities. Among them, actin filaments are mainly responsible for maintaining cell shape and mediating cell movement, microtubules are in charge of coordinating all cargo transport within the cell, and intermediate filaments are mainly thought to guard against external mechanical pressure. In addition to this, cytoskeleton networks are also found to play an essential role in multiple viral infections.
View Article and Find Full Text PDFPhase measuring deflectometry (PMD) offers notable advantages for precision inspection of specular elements. Nevertheless, if confronts challenges when measuring freeform specular surfaces due to the dispersion of reflection rays from surfaces with high local slopes. Here, we propose a multi-view stitching PMD.
View Article and Find Full Text PDFEmerging pathogen infections, such as Zika virus (ZIKV), pose an increasing threat to human health, but the role of mechanobiological attributes of host cells during ZIKV infection is largely unknown. Here, we reveal that ZIKV infection leads to increased contractility of host cells. Importantly, we investigated whether host cell contractility contributes to ZIKV infection efficacy, from both the intracellular and extracellular perspective.
View Article and Find Full Text PDFHepatitis C virus (HCV) infection causes severe liver diseases and remains a major global public health concern. Current direct-acting antiviral (DAA)-based therapies that target viral proteins involving HCV genome replication are effective, however a minority of patients still fail to cure HCV, rendering a window to develop additional antivirals particularly targeting host functions involving in HCV infection. Here, we utilized the HCV infection cell culture system (HCVcc) to screen in-house compounds bearing host-interacting preferred scaffold for the antiviral activity.
View Article and Find Full Text PDFBackground: Panax quinquefolius saponin (PQS) is the main active component of Panax quinquefolius. Emerging evidence suggests that PQS exerts beneficial effects against cardiovascular diseases. However, the role and mechanism of PQS in vascular calcification are not unclear.
View Article and Find Full Text PDFPlant Biotechnol J
February 2023
Light is known to regulate anthocyanin pigment biosynthesis in plants on several levels, but the significance of protein phosphorylation in light-induced anthocyanin accumulation needs further investigation. In this study, we investigated the dynamics of the apple fruit phosphoproteome in response to light, using high-performance liquid chromatography-tandem mass spectrometry analysis. Among the differentially phosphorylated proteins, the bZIP (basic leucine zipper) transcription factor, HY5, which has been identified as an anthocyanin regulator, was rapidly activated by light treatment of the fruit.
View Article and Find Full Text PDFDuring the deposition and post-treatments of organic films, phase separation along the film-depth direction is a commonly observed phenomenon. Thus, film-depth profilometry of organic thin films and the corresponding scientific instruments are attracting extensive interest. Here, we propose spectroscopic film-depth profilometry of organic thin films upon inductively coupled plasma etching.
View Article and Find Full Text PDFPhosphorus (P) is a non-substitutable resource and global reserves of phosphate rock are limited. In this study, phosphorus recovery by Chlorella vulgaris, and the effects of different light intensities (2000 Lux, 5000 Lux, 8000 Lux, 12,000 Lux) on the phosphorus distribution in the soluble microbial product (SMP), extracellular polymeric substance (EPS) and intracellular polymeric substance (IPS) were analyzed. The results showed that the 5000 Lux was the optimum light intensity for P uptake and transformation by Chlorella vulgaris under mixotrophic cultivation.
View Article and Find Full Text PDFLow temperature can affect the growth and development of plants through changes in DNA demethylation patterns. Another known effect of low temperature is the accumulation of anthocyanin pigments. However, it is not known whether the two phenomena are linked, specifically, whether DNA demethylation participates in anthocyanin accumulation in response to low-temperature stress.
View Article and Find Full Text PDFBipolar host materials with high triplet energy are of great significance for highly efficient blue organic light-emitting diodes (OLEDs). In this work, three donor-acceptor-donor (D-A-D) type host materials with identical non-rigid diphenylsulfone center but differing in rotation degree of peripheral amino substituted derivatives from rotating freely diphenylamine (SODP) to rotating partially iminodibenzyl (SOId) and rotating restricted carbazole (SOCz) were designed and synthesized. It was demonstrated that the triplet energy (E ) level of the materials promoted by limiting the rotation degree of the peripheral groups, which was 2.
View Article and Find Full Text PDFOrganic thin films are widely used in organic electronics and coatings. Such films often feature film-depth dependent variations of composition and optoelectronic properties. State-of-the-art depth profiling methods such as mass spectroscopy and photoelectron spectroscopy rely on non-intrinsic species (vaporized ions, etching-induced surface defects), which are chemically and functionally different from the original materials.
View Article and Find Full Text PDFThe synthesis of anthocyanin pigments in plants is known to be regulated by multiple mechanisms, including epigenetic regulation; however, the contribution of the RNA-directed DNA methylation (RdDM) pathway is not well understood. Here, we used bisulfite sequencing and Real Time (RT)-quantitative (q) PCR to analyze the methylation level of the promoter of constitutively photomorphogenic 1 () from cv. spp, a gene involved in regulating anthocyanin biosynthesis.
View Article and Find Full Text PDFThis paper is devoted to a nonautonomous SVIR epidemic model with relapse, that is, the recurrence rate is considered in the model. The permanent of the system is proved, and the result on the existence and uniqueness of globally attractive almost periodic solution of this system is obtained by constructing a suitable Lyapunov function. Some analysis for the necessity of considering the recurrence rate in the model is also presented.
View Article and Find Full Text PDFBoth the mechanosensitive actin cytoskeleton and caveolae contribute to active processes such as cell migration, morphogenesis, and vesicular trafficking. Although distinct actin components are well studied, how they contribute to cytoplasmic caveolae, especially in the context of mechano-stress, has remained elusive. Here, we identify two actin-associated mobility stereotypes of caveolin-1 (CAV-1)-marked intracellular vesicles, which are characterized as 'dwelling' and 'go and dwelling'.
View Article and Find Full Text PDFHCV cell-culture system uses hepatoma-derived cell lines for efficient virus propagation. Tumor cells cultured in glucose undergo active aerobic glycolysis, but switch to oxidative phosphorylation for energy production when cultured in galactose. Here, we investigated whether modulation of glycolysis in hepatocytes affects HCV infection.
View Article and Find Full Text PDFUNC93B1 is a trafficking chaperone of endosomal Toll-like receptors (TLRs) and plays an essential role in the TLR-mediated innate signaling. However, whether it is also involved in other innate immune sensing or cellular pathways remains largely unexplored. Here we investigated the role of UNC93B1 in cytosolic DNA-triggered cGAS-STING signaling in mouse and human cell lines.
View Article and Find Full Text PDFStructured illumination microscopy (SIM) has become a widely used tool for insight into biomedical challenges due to its rapid, long-term, and super-resolution (SR) imaging. However, artifacts that often appear in SIM images have long brought into question its fidelity, and might cause misinterpretation of biological structures. We present HiFi-SIM, a high-fidelity SIM reconstruction algorithm, by engineering the effective point spread function (PSF) into an ideal form.
View Article and Find Full Text PDFPu-erh tea is a post-fermentation tea with unique flavor and multiple health benefits. Due to the various microorganisms involved in the post-fermentation process, Pu-erh tea contains highly complex components, which have rich interactions with the gut microbiomes (GMs). Because the structure and homeostasis of GMs are closely related to human wellness and the various diseases progress, the beneficial effects of Pu-erh tea on GMs have a great potential for application in health care.
View Article and Find Full Text PDF