Publications by authors named "Yifan Long"

One challenge for gas sensors is humidity interference, as dynamic humidity conditions can cause unpredictable fluctuations in the response signal to analytes, increasing quantitative detection errors. Here, we introduce a concept: Select humidity sensors from a pool to compensate for the humidity signal for each gas sensor. In contrast to traditional methods that extremely suppress the humidity response, the sensor pool allows for more accurate gas quantification across a broader range of application scenarios by supplying customized, high-dimensional humidity response data as extrinsic compensation.

View Article and Find Full Text PDF

Synthesizing the best material globally is challenging; it needs to know what and how much the best ingredient composition should be for satisfying multiple figures of merit simultaneously. Traditional one-variable-at-a-time methods are inefficient; the design-build-test-learn (DBTL) method could achieve the optimal composition from only a handful of ingredients. A vast design space needs to be explored to discover the possible global optimal composition for on-demand materials synthesis.

View Article and Find Full Text PDF

Synthetic ionophores are promising therapeutic targets, yet poor water solubility limits their potential for translation into the clinic. Here we report a water-soluble, supramolecular self-associating amphiphile that functions as a cation uniporter in synthetic vesicle systems, deriving mechanistic insight through planar bilayer patch clamp experiments.

View Article and Find Full Text PDF

The rise of antimicrobial resistance remains one of the greatest global health threats facing humanity. Furthermore, the development of novel antibiotics has all but ground to a halt due to a collision of intersectional pressures. Herein we determine the antimicrobial efficacy for 14 structurally related supramolecular self-associating amphiphiles against clinically relevant Gram-positive methicillin resistant and Gram-negative .

View Article and Find Full Text PDF

Hypothesis: Distinguishing substituted aromatic isomers is a challenging task because of the great similarity of their physicochemical properties. Considering xylene isomers have drastically different geometrical shapes, we predict this would show great impact on the self-assembling behavior of various xylene isomer@cyclodextrin inclusion complex.

Experiments: Through host-guest crystalline self-assembly, among three isomers, only ortho-xylene is capable to form hydrogels with α-cyclodextrin.

View Article and Find Full Text PDF