Publications by authors named "Yien Liu"

Triple-negative breast cancer (TNBC) accounts for 15-20% of all breast cancer. TNBC does not express the estrogen receptor, progesterone receptor, or human epidermal growth factor receptor 2. Cytotoxic chemotherapy and surgery are the current therapeutic strategies for TNBC patients, but the chemoresistance of TNBC limits the efficiency of this strategy and shortens the lifespan of patients.

View Article and Find Full Text PDF

Breast cancer is common worldwide, and the estrogen receptor-positive subtype accounts for approximately 70% of breast cancer in women. Tamoxifen and fulvestrant are drugs currently used for endocrinal therapy. Breast cancer exhibiting endocrine resistance can undergo metastasis and lead to the death of breast cancer patients.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) represents up to 20% of all breast cancers. This cancer lacks the expression of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. The current therapeutic strategy for patients with this subtype is the use of cytotoxic chemotherapy and surgery.

View Article and Find Full Text PDF

Tamoxifen is one of the most common hormone therapy drug for estrogen receptor (ER)-positive breast cancer. Tumor cells with drug resistance often cause recurrence and metastasis in cancer patients. Luteolin is a natural compound found from various types of vegetables and exhibit anticancer activity in different cancers.

View Article and Find Full Text PDF

Introduction: Colocalization of endothelial nitric oxide synthase (eNOS) and capacitative Ca entry (CCE) channels in microdomains such as cavaeolae in endothelial cells (ECs) has been shown to significantly affect intracellular Ca dynamics and NO production, but the effect has not been well quantified.

Methods: We developed a two-dimensional continuum model of an EC integrating shear stress-mediated ATP production, intracellular Ca mobilization, and eNOS activation to investigate the effects of spatial colocalization of plasma membrane eNOS and CCE channels on Ca dynamics and NO production in response to flow-induced shear stress. Our model examines the hypothesis that subcellular colocalization of cellular components can be critical for optimal coupling of NO production to blood flow.

View Article and Find Full Text PDF

Objectives: The effect of NO on smooth muscle cell contractility is crucial in regulating vascular tone, blood flow, and O delivery. Quantitative predictions for interactions between the NO production rate and the myogenic response for microcirculatory blood vessels are lacking.

Methods: We developed a computational model of a branching microcirculatory network with four representative classes of resistance vessels to predict the effect of endothelium-derived NO on the microvascular pressure-flow response.

View Article and Find Full Text PDF

Nitric oxide (NO) generated from nitrite through nitrite reductase activity in red blood cells has been proposed to play a major role in hypoxic vasodilation. However, we have previously predicted from mathematical modeling that much more NO can be derived from tissue nitrite reductase activity than from red blood cell nitrite reductase activity. Evidence in the literature suggests that tissue nitrite reductase activity is associated with xanthine oxidoreductase (XOR) and/or aldehyde oxidoreductase (AOR).

View Article and Find Full Text PDF

Interactions between cardiac myoglobin (Mb), nitrite, and nitric oxide (NO) are vital in regulating O storage, transport, and NO homeostasis. Production of NO through the reduction of endogenous myocardial nitrite by deoxygenated myoglobin has been shown to significantly reduce myocardial infarction damage and ischemic injury. We developed a mathematical model for a cardiac arteriole and surrounding myocardium to examine the hypothesis that myoglobin switches functions from being a strong NO scavenger to an NO producer via the deoxymyoglobin nitrite reductase pathway.

View Article and Find Full Text PDF

Nitrite infusion into the bloodstream has been shown to elicit vasodilation and protect against ischemia-reperfusion injury through nitric oxide (NO) release in hypoxic conditions. However, the mechanism by which nitrite-derived NO escapes scavenging by hemoglobin in the erythrocyte has not been fully elucidated, owing in part to the difficulty in measuring the reactions and transport on NO in vivo. We developed a mathematical model for an arteriole and surrounding tissue to examine the hypothesis that dinitrogen trioxide (NO) acts as a stable intermediate for preserving NO.

View Article and Find Full Text PDF