Subclinical neck pain (SCNP) is a subset of the recurrent neck pain population for which individuals have not received treatment. Individuals with SCNP have been shown to have altered cerebellar processing. The cerebellum integrates sensorimotor information to refine and update internal models necessary for reaching movements.
View Article and Find Full Text PDFArtificial Intelligence (AI), computer simulations, and virtual reality (VR) are increasingly becoming accessible tools that can be leveraged to implement training protocols and educational resources. Typical assessment tools related to sensory and neural processing associated with task performance in virtual environments often rely on self-reported surveys, unlike electroencephalography (EEG), which is often used to compare the effects of different types of sensory feedback (e.g.
View Article and Find Full Text PDFIndividuals with subclinical neck pain (SCNP) exhibit altered cerebellar processing, likely due to disordered sensorimotor integration of inaccurate proprioceptive input. This association between proprioceptive feedback and SMI has been captured in cervico-ocular reflex (COR) differences where SCNP showed higher gain than healthy participants. Previous neurophysiological research demonstrated improved cerebellar processing in SCNP participants following a single treatment session, but it is unknown whether these neurophysiological changes transfer to cerebellar function.
View Article and Find Full Text PDFIndividuals with untreated, mild-to-moderate recurrent neck pain or stiffness (subclinical neck pain (SCNP)) have been shown to have impairments in upper limb proprioception, and altered cerebellar processing. It is probable that aiming trajectories will be impacted since individuals with SCNP cannot rely on accurate proprioceptive feedback or feedforward processing (body schema) for movement planning and execution, due to altered afferent input from the neck. SCNP participants may thus rely more on visual feedback, to accommodate for impaired cerebellar processing.
View Article and Find Full Text PDFBackground: Neural adaptions in response to sensorimotor tasks are impaired in those with untreated, recurrent mild-to-moderate neck pain (subclinical neck pain (SCNP)), due to disordered central processing of afferent information (e.g., proprioception).
View Article and Find Full Text PDFAlterations in neck sensory input from recurrent neck pain (known as subclinical neck pain (SCNP)) result in disordered sensorimotor integration (SMI). The cervico-ocular (COR) and vestibulo-ocular (VOR) reflexes involve various neural substrates but are coordinated by the cerebellum and reliant upon proprioceptive feedback. Given that proprioception and cerebellar processing are impaired in SCNP, we sought to determine if COR or VOR gain is also altered.
View Article and Find Full Text PDFIntroduction: Tissue at risk, as estimated by CT perfusion utilizing Tmax+6, correlates with final infarct volume (FIV) in acute ischaemic stroke (AIS) without reperfusion. Tmax thresholds are derived from Western ethnic populations but not from ethnic Asian populations. We aimed to investigate the influence of ethnicity on Tmax thresholds.
View Article and Find Full Text PDFAttention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder, where differences are often present relating to the performance of motor skills. Our previous work elucidated unique event-related potential patterns of neural activity in those with ADHD when performing visuomotor and force-matching motor paradigms. The purpose of the current study was to identify whether there were unique neural sources related to somatosensory function and motor performance in those with ADHD.
View Article and Find Full Text PDFIntroduction: Attention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that exhibits unique neurological and behavioral characteristics. Those with ADHD often have noted impairments in motor performance and coordination, including during tasks that require force modulation. The present study provides insight into the role of altered neural processing and SMI in response to a motor learning paradigm requiring force modulation and proprioception, that previous literature has suggested to be altered in those with ADHD, which can also inform our understanding of the neurophysiology underlying sensorimotor integration (SMI) in the general population.
View Article and Find Full Text PDFAttention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that has noted alterations to motor performance and coordination, potentially affecting learning processes and the acquisition of motor skills. This work will provide insight into the role of altered neural processing and sensorimotor integration (SMI) while learning a novel visuomotor task in young adults with ADHD. This work compared adults with ADHD ( = 12) to neurotypical controls ( = 16), using a novel visuomotor tracing task, where participants used their right-thumb to trace a sinusoidal waveform that varied in both frequency and amplitude.
View Article and Find Full Text PDFForce modulation relies on accurate proprioception, and force-matching tasks alter corticocerebellar connectivity. Corticocerebellar (N24) and corticomotor pathways are impacted following the acquisition of a motor tracing task (MTT), measured using both somatosensory evoked potentials (SEPs) and transcranial magnetic stimulation. This study compared changes in early SEP peak amplitudes and motor performance following a force-matching tracking task (FMTT) to an MTT.
View Article and Find Full Text PDFAttention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that exhibits unique neurological and behavioural characteristics. Our previous work using event-related potentials demonstrated that adults with ADHD process audiovisual multisensory stimuli somewhat differently than neurotypical controls. This study utilised an audiovisual multisensory two-alternative forced-choice discrimination task.
View Article and Find Full Text PDFSubclinical neck pain (SCNP) refers to recurrent neck pain and/or stiffness for which individuals have not yet sought treatment. Prior studies have shown that individuals with SCNP have altered cerebellar processing that exhibits an altered body schema. The cerebellum also plays a vital role in upper limb reaching movements through refining internal models and integrating sensorimotor information.
View Article and Find Full Text PDFEven on pain free days, recurrent neck pain alters sensorimotor integration (SMI) measured via somatosensory evoked potentials (SEPs). Neck muscle fatigue decreases upper limb proprioception, and thus may interfere with upper limb motor task acquisition and SMI. This study aimed to determine the effect of cervical extensor muscle (CEM) fatigue on upper limb motor acquisition and retention; and SMI, measured via early SEPs.
View Article and Find Full Text PDFPrevious studies have shown significant changes in cortical and subcortical evoked potential activity levels in response to motor training with the distal upper-limb muscles. However, no studies to date have assessed the neurological processing changes in somatosensory evoked potentials (SEPs) associated with motor training whole-arm movements utilizing proximal upper-limb muscles. The proximal upper-limb muscles are a common source of work-related injuries, due to repetitive glenohumeral movements.
View Article and Find Full Text PDFThe cerebellum undergoes neuroplastic changes in response to motor learning. Healthy human individuals demonstrate reduced cerebellar inhibition (CBI) following motor learning. Alterations in neck sensory input due to muscular fatigue are known to impact upper limb sensorimotor processing, suggesting that neck fatigue may also impact cerebellum to motor cortex (M1) pathways in response to motor learning.
View Article and Find Full Text PDFDuring training in a novel dynamic environment, the non-dominant upper limb favors feedback control, whereas the dominant limb favors feedforward mechanisms. Early somatosensory evoked potentials (SEPs) offer a means to explore differences in cortical regions involved in sensorimotor integration (SMI). This study sought to compare differences in SMI between the right (Dom) and left (Non-Dom) hand in healthy right-handed participants.
View Article and Find Full Text PDFWhen used in educational settings, simulations utilizing virtual reality (VR) technologies can reduce training costs while providing a safe and effective learning environment. Tasks can be easily modified to maximize learning objectives of different levels of trainees (e.g.
View Article and Find Full Text PDFMultisensory integration is a fundamental form of sensory processing that is involved in many everyday tasks. Those with Attention-Deficit/Hyperactivity Disorder (ADHD) have characteristic alterations to various brain regions that may influence multisensory processing. The overall aim of this work was to assess how adults with ADHD process audiovisual multisensory stimuli during a complex response time task.
View Article and Find Full Text PDFMultisensory integration (MSI) is necessary for the efficient execution of many everyday tasks. Alterations in sensorimotor integration (SMI) have been observed in individuals with subclinical neck pain (SCNP). Altered audiovisual MSI has previously been demonstrated in this population using performance measures, such as reaction time.
View Article and Find Full Text PDFJ Electromyogr Kinesiol
August 2019
Altered afferent input from the neck due to fatigue alters upper limb proprioception and is likely to impact upper limb performance accuracy. This study examined the effect of cervical extensor muscle (CEM) fatigue on eye-hand tracking accuracy in healthy participants. Twenty-four healthy right-handed individuals were randomly assigned to either a control or CEM fatigue group.
View Article and Find Full Text PDFThe purpose of this study was to assess how young adults with attention-deficit/hyperactivity disorder (ADHD) process audiovisual (AV) multisensory stimuli using behavioral and neurological measures. Adults with a clinical diagnosis of ADHD ( = 10) and neurotypical controls ( = 11) completed a simple response time task, consisting of auditory, visual, and AV multisensory conditions. Continuous 64-electrode electroencephalography (EEG) was collected to assess neurological responses to each condition.
View Article and Find Full Text PDFPrior work showed differential alterations in early somatosensory evoked potentials (SEPs) and improved motor learning while in acute tonic pain. The aim of the current study was to determine the interactive effect of acute tonic pain and early motor learning on corticospinal excitability as measured by transcranial magnetic stimulation (TMS). Two groups of twelve participants ( = 24) were randomly assigned to a control (inert lotion) or capsaicin (capsaicin cream) group.
View Article and Find Full Text PDFRecent work found that experimental pain appeared to negate alterations in cortical somatosensory evoked potentials (SEPs) that occurred in response to motor learning acquisition of a novel tracing task. The goal of this experiment was to further investigate the interactive effects of pain stimulus location on motor learning acquisition, retention, and sensorimotor processing. Three groups of twelve participants ( = 36) were randomly assigned to either a local capsaicin group, remote capsaicin group or contralateral capsaicin group.
View Article and Find Full Text PDFObjective: The benefits of exercise on brain health is well known in aging and psychiatric populations. However, the relationship between habitual exercise in young and healthy adults remains unclear. This study explored the effects an eight-week exercise prescription on cognitive function, brain-derived neurotrophic factor (BDNF) and cathepsin B (CTHB) in young and healthy adults.
View Article and Find Full Text PDF