Publications by authors named "Yide Han"

Time-dependent phosphorescence color (TDPC) materials are highly attractive for realizing multitiered dynamic information encryption and anti-counterfeiting. It's extremely challenging to modulate puzzle of multiple luminescence species and understand the intrinsic mechanism. Herein, we demonstrate a novel and synthesize-friendly strategy to develop a high contrast TDPC carbonized polymer dots (CPDs) with adjustable lifetime and quantum yields.

View Article and Find Full Text PDF

Quantum dots (QDs) of metal sulfides were proven to be excellent cocatalysts in visible-light-driven photocatalytic reactions. Metal organic frameworks (MOFs) possess a 3D porous channel that effectively confines small QDs and preserves their high catalytic activity by preventing their aggregation. In order to precisely construct the ternary metal sulfides of ZnS/ZnInS/InS with well-maintained Zn-AgInS (ZAIS) QDs, an in situ sulfurization combining a subsequent Zn(II)-exchange strategy was employed in this work.

View Article and Find Full Text PDF

Herein, we propose a strategy combining sol-gel hydrothermal growth and annealing treatment for preparing multi-component carbon-based composites with high crystallinity of NiBDC (C-Ni/NiO/NiBDC). The C-Ni/NiO/NiBDC can be used by both positive and negative materials to build a supercapacitor that shows superior capacitance over the wide potential range of 0-1.8 V, resulting from the high crystallinity of NiBDC and synergistic effect of NiBDC, Ni and NiO, as well as their mutual intimate interfacial contact.

View Article and Find Full Text PDF

Considering the surface affinity of MOFs and separation advantages of polymer membranes, herein, a one-step interface synthesis strategy is used in the construction of Cu-BTC/PVDF hybrid membranes, in which Cu ions and 1,3,5-benzenetricarboxylic acid (HBTC) were dissolved in ionized water and -octanol separately, and polyvinylidene fluoride (PVDF) films were laid at the interface of two immiscible solvents. As a result, Cu-BTC was generated and readily self-assembled inside the PVDF films. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA) and the Brunauer-Emmett-Teller (BET) method were used to characterize Cu-BTC/PVDF hybrid membranes, and Congo red (CR) was selected as the target dye to evaluate the surface adsorption activity of the hybrid membranes.

View Article and Find Full Text PDF

Development of binary MOF-on-MOF heterostructures is a research hotspot in MOFs chemistry due to the advantages elicited by a closely connected interface, which may endow more abundant functionality and even broader applications in interface chemistry. A MOF-on-MOF heterostructure was constructed by growth of MIL-88B on the outer surface of UiO-66. The resultant MIL-88B@UiO-66 produced had an interesting flower-like morphology composed of MIL-88B (petal) on tetrahedral UiO-66 (core).

View Article and Find Full Text PDF

The rational design of high-efficiency electrocatalysts for application in water oxidation in alkaline media remains a great challenge. In this paper, Ni-rich nanograss-like Mo-doped NiS/NiS/VS arrays grown on nickel foam (denoted as Mo-NiVS@NF) have been successfully constructed through a hydro/solvothermal method. Interestingly, Mo-NiVS@NF exhibits superior catalytic OER performance, needing an overpotential of 217 mV to drive a current density of 10 mA cm, outperforming most previously reported NiS-based electrocatalysts.

View Article and Find Full Text PDF

Non-enzymatic glucose sensors based on metal oxides are receiving remarkable attention owing to their outstanding characteristics of being easy-to use, low cost, and reusability. However, the disadvantage of weak anti-interference associated with poor selectivity significantly restricts their applicability. Herein, we report a two-step fabrication of nanosized CuO encapsulated Ni/Co bimetal Prussian blue (PB) with a typical core-shell structure, which can be efficiently used for non-enzymatic glucose detection, ascribing to the permeability and abundant active sites of out-shelled crystalline porous Ni/Co PB and the high catalytic activity and conductivity of embedded CuO nanoparticles, afforded by their mutual synergistic interactions.

View Article and Find Full Text PDF

The synergistic effects involving surface adsorption and photocatalytic degradation commonly play significant roles in the removal of persistent synthetic organics from wastewater in the case of porous semiconductors. Inspired by the visible-light harvesting advantages of porphyrin-based MOFs, a capsule-like bimetallic porphyrin-based MOF (PCN-222(Ni/Hf)) has been successfully constructed through a facile hydrothermal method. In which, the Hf (IV) ions were exactly bonded to the carboxyl groups substituted on the porphyrin rings, meanwhile the Ni (II) ions were finely bonded to the -N inside the porphyrin rings.

View Article and Find Full Text PDF

A hierarchical hollow Ni/Co-codoped MoS2 architecture was successfully prepared using a Ni/Co Prussian Blue analogue as the precursor followed by the solvothermal-assisted insertion of MoS42- and extraction of [Co(CN)6]3- at 200 °C for 32 h. The obtained Ni/Co-codoped MoS2 composite exhibited a hollow microcubic structural characteristic, and the morphology, structure, and chemical compositions were carefully characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), respectively. The Ni/Co-codoped MoS2 composite used as an electrode material featured excellent glucose sensing activity and a high sensitivity of 2546 μA mM-1 cm-2 with a relatively low detection limit of 0.

View Article and Find Full Text PDF

MOF/polymer hybrid membranes integrate the surface activity of MOFs and the advantages of PVDF membranes, and can be used as adsorption membranes in the efficient removal of target organics. In this work, a new hybrid membrane of ZIF-67/PVDF with varying ZIF-67 dosages has been fabricated through a facile mechanical blending followed by a lyotropic phase transition. Methods including field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), FT-IR analyses and surface hydrophobicity/hydrophilicity measurements are applied to characterize the structure, physicochemical properties and membrane performances.

View Article and Find Full Text PDF

CdS/Ag2S/g-C3N4 ternary composites as photocatalysts with different amounts of Ag2S were successfully synthesized through a simple chemical deposition method. These photocatalysts were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) mapping and X-ray photoelectron spectroscopy (XPS) to obtain the information of the structure and composition. Compared with the pure samples and binary composites, CdS/Ag2S/g-C3N4 ternary composites showed enhanced hydrogen production activities, and the maximum hydrogen production rate of CdS/Ag2S(2%)/CN is about 1020.

View Article and Find Full Text PDF

Extended exposure to sunlight or artificial UV sources (particularly UVA and UVB) is a major cause of serious skin cancers and ocular diseases. A photochromic inorganic-organic complex was ionothermally synthesized a decomposition-reassembly strategy, generated from a low-cost deep-eutectic solvent and a 4,4'-bipyridine system. Benefiting from the intrinsic synergy of the hydrogen bonding and π-π stacking interactions, the complex exhibited insensitivity towards visible light, outstanding color contrast from colorless to purple, rapid response time up to seconds, excellent reversibility and high thermal stability.

View Article and Find Full Text PDF

Multicomponent spinel ferrites are essential to be used in high-performance gas-sensing materials. Herein, multinary (Cu,Zn)Fe2O4 spinel nano-microspheres with tunable internal structures, including solid, core-shell, and yolk-shell, were successfully synthesized by a simple self-templated solvothermal method combined with a subsequent annealing strategy. The internal structures of the (Cu,Zn)Fe2O4 nano-microspheres significantly rely on the heating rates of the precursors, which show promising selective response towards trimethylamine gas.

View Article and Find Full Text PDF

Controlled synthesis of rare-earth metal-organic frameworks (RE-MOFs) is of great significance to match their emerging multifunctional luminescence applications. Herein, we propose a green and general solvent-free synthetic strategy for the adjustment of morphology and dimension of various RE-MOFs (RE = Eu, Tb, Er, Dy, Y, Tm) by using a tetraethylammonium bromide-assisted thermal-heating method. These self-assembled RE-MOF materials possess controllable morphologies and hierarchical structures while retaining the structural topology of MIL-78, proving that the strategy is a feasible and effective way in opening up large-scale synthesis of RE-MOFs.

View Article and Find Full Text PDF

A facile synthetic route, by using rhombic dodecahedral zeolitic imidazolate framework-8 (ZIF-8) as the structure template, is devoted to fabricating the ZnS/ZnIn2S4 hybrid heterojunction; the compact heterostructure was produced by combining the sulfurization of ZIF-8 and the in situ precipitation of ZnIn2S4 in one pot. The resulting ZnS nanoparticles of about 100 nm were uniformly dispersed in the folds of flower-like ZnIn2S4, whose structure is beneficial for charge transfer at the heterointerface. The additional quantities of ZIF-8 are varied to find an optimum ratio of the two components to obtain the best photocatalytic activity.

View Article and Find Full Text PDF

In principle, nanoparticle occlusion within crystals provides a straightforward and efficient route to make new nanocomposite materials. However, developing a deeper understanding of the design rules underpinning this strategy is highly desirable. In particular, controlling the spatial distribution of the guest nanoparticles within the host crystalline matrix remains a formidable challenge.

View Article and Find Full Text PDF

A versatile organic-inorganic hybrid structure makes a metal-organic framework (MOF) an outstanding host for different kinds of guests; in addition, its easy pyrolysis nature has been proven to be useful as precursors in the construction of carbon-based materials with a special porous structure. Herein, a novel porous composite nanostructure of an aminated MIL-53(Al)@carbon nanotube (CNT) has been successfully constructed for the first time based on in situ synthesis combining the pyrolysis of ZIF-67. The resulting composite nanostructure was performed by the means of scanning electron microscopy, Brunauer-Emmett-Teller analysis, typical and high-resolution transmission electronic microscopy, X-ray photoelectron spectroscopy, etc.

View Article and Find Full Text PDF

Developing novel solid adsorbents with high efficiency and excellent selectivity is always an important target in the removal of toxic metal ions from waste water. In this study, a composite nano-adsorbent NH2-mSiO2@MIL-101(Cr) has been fabricated and applied in the efficient removal of Pb(ii) and Cr(vi) for the first time. The nanocomposites were characterized by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), fourier-transform infrared (FT-IR) spectroscopy and thermal gravimetry analysis (TG).

View Article and Find Full Text PDF

Engineering semiconductors with porous hierarchical micro-/nanostructures is a feasible strategy to obtain high solar-light utilization efficiency and strong photocatalytic performance. In this work, an integrated strategy of solvent evaporation and morphology-inherited annealing for the Fe-based metal-organic framework was developed to prepare the hierarchical spinel zinc ferrite (ZnFeO) micro-/nanostructure. The morphology and porosity of the hierarchical ZnFeO structures can be adjusted by optimizing the annealing temperatures.

View Article and Find Full Text PDF

Magnetic carboxyl functional nanoporous polymer (MCFNP) was chemically fabricated by incorporation of magnetic FeO precursor into the carboxyl functional nanoporous polymer (CFNP). The as-synthesized MCFNP was characterized and used as an adsorbent for rapid adsorption removal of methylene blue (MB) from wastewater. Several experimental parameters affecting the adsorption efficiency were investigated including initial pH, adsorbent dosage, initial MB concentration, contact time and temperature.

View Article and Find Full Text PDF

A hierarchical zeolitic imidazolate framework-8 (micro/meso-ZIF-8) was fabricated by using cetyltrimethylammonium bromide as a structure-controlling agent and l-histidine as co-templates. Compared to the conventional microporous ZIF-8 (micro-ZIF-8), the hierarchical porous structure of micro/meso-ZIF-8 contains micropores and maximum mesopores of around 35.6 nm.

View Article and Find Full Text PDF

Core-shell metal-organic framework materials have attracted considerable attention mainly due to their enhanced or new physicochemical properties compared with their single-component counterparts. In this work, a core-shell heterostructure of CoFe2 O4 -Zeolitic Imidazolate Framework-8 (ZIF-8@CoFe2 O4 ) is successfully fabricated and used as an solid-phase extraction adsorbent to efficiently extract Congo Red and Basic Red 2 dyes from contaminated aqueous solution. Vibrating sample magnetometry indicates that the saturated magnetization of ZIF-8@CoFe2 O4 is 3.

View Article and Find Full Text PDF

Highly efficient composite photocatalysts composed of silver cyanamide (Ag2NCN) and anatase titania (TiO2) were fabricated through a chemical precipitation process of silver nitrate and cyanamide in TiO2 suspensions. The TiO2 nanoparticles around 15 nm were immobilized on the surface of rectangular Ag2NCN particles to form a hetero-structure, and the contents of TiO2 were varied to tune the structure and the photocatalytic performances. In comparison with single TiO2 or Ag2NCN, the TiO2/Ag2NCN nanocomposites exhibited a prominent improved photocatalytic activity in the hydrogen generation, and the hydrogen evolution rate (1494.

View Article and Find Full Text PDF

A series of zeolitic alumino- and gallogermanate compounds, |M(II)(en)(3)|[M(III)(2)Ge(4)O(12)] (M(II) = Ni, Co, Zn; M(III) = Al, Ga; en = ethylenediamine), has been synthesized using in situ formed [M(II)(en)(3)](2+) cations as the structure-directing agents. These zeolitic compounds exhibit the same JST framework topology which is built exclusively of 3-rings. Their structures were determined by single-crystal X-ray diffraction.

View Article and Find Full Text PDF