is a multi-drug-resistant opportunistic pathogen that adapts to challenging environments by deploying virulence factors, including the type III secretion system (T3SS). Emerging evidence points to a role for NADH dehydrogenase complexes in regulating virulence; however, their precise contributions remain unclear. Here, we identify , a component of the NADH dehydrogenase complex I ( operon), as a key regulator of T3SS-related activities.
View Article and Find Full Text PDFThis study explores the bidirectional association between multimorbidity and falls in Chinese middle-aged and elderly adults. Participants aged 45 and above from the China Health and Retirement Longitudinal Study were included. Binary logistic regression assessed the impact of chronic conditions on fall incidence (stage I), while multinomial logistic regression examined the relationship between baseline falls and multimorbidity (stage II).
View Article and Find Full Text PDFUnlabelled: Cancer immunotherapy has revolutionized the treatment of lung adenocarcinoma (LUAD); however, a significant proportion of patients do not respond. Recent transcriptomic studies to understand determinants of immunotherapy response have pinpointed stromal-mediated resistance mechanisms. To gain a better understanding of stromal biology at the cellular and molecular level in LUAD, we performed single-cell RNA sequencing of 256,379 cells, including 13,857 mesenchymal cells, from 9 treatment-naïve patients.
View Article and Find Full Text PDFObjectives: Ovarian serous carcinoma (OSC) is a major cause of gynaecological cancer death, yet there is a lack of reliable prognostic models. To address this, we developed and validated a nomogram based on conventional clinical characteristics and log odds of positive lymph nodes (LODDS) to predict the prognosis of OSC patients.
Setting: A Real-World Retrospective Cohort Study from the Surveillance, Epidemiology and End Results programme.
Most genome editing analyses to date are based on quantifying small insertions and deletions. Here, we show that CRISPR-Cas9 genome editing can induce large gene modifications, such as deletions, insertions, and complex local rearrangements in different primary cells and cell lines. We analyzed large deletion events in hematopoietic stem and progenitor cells (HSPCs) using different methods, including clonal genotyping, droplet digital polymerase chain reaction, single-molecule real-time sequencing with unique molecular identifier, and long-amplicon sequencing assay.
View Article and Find Full Text PDFTargeted DNA correction of disease-causing mutations in hematopoietic stem and progenitor cells (HSPCs) may enable the treatment of genetic diseases of the blood and immune system. It is now possible to correct mutations at high frequencies in HSPCs by combining CRISPR/Cas9 with homologous DNA donors. Because of the precision of gene correction, these approaches preclude clonal tracking of gene-targeted HSPCs.
View Article and Find Full Text PDFGenome editing using programmable nucleases is revolutionizing life science and medicine. Off-target editing by these nucleases remains a considerable concern, especially in therapeutic applications. Here we review tools developed for identifying potential off-target editing sites and compare the ability of these tools to properly analyze off-target effects.
View Article and Find Full Text PDFAim: Patients with autoimmune connective tissue disease (ACTD) may have anti-thyroid peroxidase antibody (TPOAb) and anti-thyroglobulin antibody (TgAb). This study aimed to compare the prevalence of thyroid autoantibodies in ACTD patients and controls.
Methods: All case-control studies published between 1980 and 2019 in English were searched from Medline, Embase, Web of Science, PubMed databases for meta-analysis and subgroup analyses.
The majority of genome-wide association study (GWAS)-identified SNPs are located in noncoding regions of genes and are likely to influence disease risk and phenotypes by affecting gene expression. Since credible intervals responsible for genome-wide associations typically consist of ≥100 variants with similar statistical support, experimental methods are needed to fine map causal variants. We report here a moderate-throughput approach to identifying regulatory GWAS variants, expression CROP-seq, which consists of multiplex CRISPR-Cas9 genome editing combined with single-cell RNAseq to measure perturbation in transcript abundance.
View Article and Find Full Text PDFThe majority of genetic variants affecting complex traits map to regulatory regions of genes, and typically lie in credible intervals of 100 or more SNPs. Fine mapping of the causal variant(s) at a locus depends on assays that are able to discriminate the effects of polymorphisms or mutations on gene expression. Here, we evaluated a moderate-throughput CRISPR-Cas9 mutagenesis approach, based on replicated measurement of transcript abundance in single-cell clones, by deleting candidate regulatory SNPs, affecting four genes known to be affected by large-effect expression Quantitative Trait Loci (eQTL) in leukocytes, and using Fluidigm qRT-PCR to monitor gene expression in HL60 pro-myeloid human cells.
View Article and Find Full Text PDFInfluenza is a contagious respiratory illness that causes significant human morbidity and mortality, affecting 5-15% of the population in a typical epidemic season. Human influenza epidemics are caused by types A and B, with roughly 25% of human cases due to influenza B. Influenza B is a single-stranded RNA virus with a high mutation rate, and both prior immune history and vaccination put significant pressure on the virus to evolve.
View Article and Find Full Text PDFWe present Virtual Pharmacist, a web-based platform that takes common types of high-throughput data, namely microarray SNP genotyping data, FASTQ and Variant Call Format (VCF) files as inputs, and reports potential drug responses in terms of efficacy, dosage and toxicity at one glance. Batch submission facilitates multivariate analysis or data mining of targeted groups. Individual analysis consists of a report that is readily comprehensible to patients and practioners who have basic knowledge in pharmacology, a table that summarizes variants and potential affected drug response according to the US Food and Drug Administration pharmacogenomic biomarker labeled drug list and PharmGKB, and visualization of a gene-drug-target network.
View Article and Find Full Text PDFWarfarin is a drug normally used in the prevention of thrombosis and the formation of blood clots. The dosage of warfarin is strongly affected by genetic variants of CYP2C9 and VKORC1 genes. Current technologies for detecting the variants of these genes are mainly based on real-time PCR.
View Article and Find Full Text PDFWarfarin is a drug normally used in the prevention of thrombosis and the formation of blood clots. The dosage of warfarin is strongly affected by genetic variants of CYP2C9 and VKORC1 genes. Current technologies for detecting the variants of these genes are mainly based on real-time PCR.
View Article and Find Full Text PDF