Publications by authors named "Yicong Yu"

The water-lubricated bearing plays a crucial role in the ship propulsion system, significantly impacting vessel safety. However, under the harsh working conditions of low-speed and heavy-load, the lubrication state of water-lubricated bearings is usually poor, leading to serious friction and wear. To improve the tribological performance of composites and reduce friction, three short fibers (ultra-high-molecular-weight polyethylene fibers, basalt fibers, and bamboo fibers) with the same mass fraction (5%) were added into the melted thermoplastic polyurethane (TPU).

View Article and Find Full Text PDF

Exosomes are extracellular vesicles that are widely distributed in multiple cell types and circulating body fluids. They have a specific effect on the target cells by releasing different vesicle contents. They have recently been recognized as important means of intercellular communication, being involved, for example, in the development of diabetes by increasing β-cell apoptosis, activating autoimmunity, and regulating cytokines to affect islet β-cell function and insulin sensitivity.

View Article and Find Full Text PDF

Mobility edge (ME), a critical energy separating localized and extended states in spectrum, is a central concept in understanding localization physics. However, there are few models with exact MEs, and their presences are fragile against perturbations. In the paper, we generalize the Aubry-André-Harper model proposed in (Ganeshan2015146601) and recently realized in (An2021040603), by introducing a relative phase in the quasiperiodic potential.

View Article and Find Full Text PDF

We study the entanglement properties of non-Hermitian free fermionic models with translation symmetry using the correlation matrix technique. Our results show that the entanglement entropy has a logarithmic correction to the area law in both one-dimensional and two-dimensional systems. For any one-dimensional one-band system, we prove that each Fermi point of the system contributes exactly 1/2 to the coefficientof the logarithmic correction.

View Article and Find Full Text PDF

Recently, perovskite light-emitting diodes (PeLEDs) are seeing an increasing academic and industrial interest with a potential for a broad range of technologies including display, lighting, and signaling. The maximum external quantum efficiency of PeLEDs can overtake 20% nowadays, however, the lifetime of PeLEDs is still far from the demand of practical applications. In this review, state-of-the-art concepts to improve the lifetime of PeLEDs are comprehensively summarized from the perspective of the design of perovskite emitting materials, the innovation of device engineering, the manipulation of optical effects, and the introduction of advanced encapsulations.

View Article and Find Full Text PDF

Tandem white organic light-emitting diodes (WOLEDs) are promising for the lighting and displays field since their current efficiency, external quantum efficiency and lifetime can be strikingly enhanced compared with single-unit devices. In this invited review, we have firstly described fundamental concepts of tandem device architectures and their use in WOLEDs. Then, we have summarized the state-of-the-art strategies to achieve high-performance tandem WOLEDs in recent years.

View Article and Find Full Text PDF

Reaching the quantum optics limit of strong light-matter interactions between a single exciton and a plasmon mode is highly desirable, because it opens up possibilities to explore room-temperature quantum devices operating at the single-photon level. However, two challenges severely hinder the realization of this limit: the integration of single-exciton emitters with plasmonic nanostructures and making the coupling strength at the single-exciton level overcome the large damping of the plasmon mode. Here, we demonstrate that these two hindrances can be overcome by attaching individual J aggregates to single cuboid Au@Ag nanorods.

View Article and Find Full Text PDF

Background: In 2008, an outbreak of canine distemper virus (CDV) infection in monkeys was reported in China. We isolated CDV strain (subsequently named Monkey-BJ01-DV) from lung tissue obtained from a rhesus monkey that died in this outbreak. We evaluated the ability of this virus on Vero cells expressing SLAM receptors from dog, monkey and human origin, and analyzed the H gene of Monkey-BJ01-DV with other strains.

View Article and Find Full Text PDF

We report an outbreak of canine distemper virus (CDV) infection among endangered giant pandas (Ailuropoda melanoleuca). Five of six CDV infected giant pandas died. The surviving giant panda was previously vaccinated against CDV.

View Article and Find Full Text PDF

Spontaneous emission lifetime orientation distributions of a two-level quantum emitter in metallic nanorod structures are theoretically investigated by the rigorous electromagnetic Green function method. It was found that spontaneous emission lifetime strongly depended on the transition dipole orientation and the position of the emitter. The anisotropic factor defined as the ratio between the maximum and minimum values of the lifetimes along different dipole orientations can reach up to 10(3).

View Article and Find Full Text PDF

Kobuviruses comprise three species, the Aichivirus A, Aichivirus B, and Aichivirus C (porcine kobuvirus). Porcine kobuvirus is endemic to pig farms and is not restricted geographically but, rather, is distributed worldwide. The complete genomic sequences of four porcine kobuvirus strains isolated during a diarrhea outbreak in piglets in the Gansu province of China were determined.

View Article and Find Full Text PDF

We investigate the light emission characteristics for single two level quantum dot (QD) in a realistic photonic crystal (PC) L3 cavity based upon the local coupling strength between the QD and cavity together with the Green's function in which the propagation function related to the position of the detector is taken into account. We find for a PC cavity that the line shape of the propagation function in frequency domain is identical to that of the cavity and independent on the detector's position. We confirm that this identity is not influenced by the horizontal decay of the cavity.

View Article and Find Full Text PDF

We investigate the enhancement of the resonance energy transfer rate between donor and acceptor associated by the surface plasmons of the Ag nanorods on a SiO2 substrate. Our results for a single nanorod with different cross sections reveal that the cylinder nanorod has the strongest ability to enhance the resonance energy transfer rate. Moreover, for donor and acceptor with nonparallel polarization directions, we propose simple V-shaped nanorod structures which lead to the remarkable resonance energy transfer enhancement that is ten times larger than that by the single nanorod structure.

View Article and Find Full Text PDF

The quality factor and mode volume of a nanocavity play pivotal roles in realizing the strong coupling interaction between the nanocavity mode and a quantum dot. We present an extremely simple method to obtain the mode volume and investigate the effect of the slab thickness on the quality factor and mode volume of photonic crystal slab nanocavities. We reveal that the mode volume is approximatively proportional to the slab thickness.

View Article and Find Full Text PDF