Eur J Pharm Biopharm
February 2025
The integration of multiple therapeutic agents within a single nano-drug carrier holds promise for advancing anti-tumor therapies, despite challenges posed by their diverse physicochemical properties. This study introduces a novel multi-stage microfluidic co-encapsulation platform designed to address these challenges. By carefully orchestrating the nano-precipitation process sequence, this platform achieves sequential encapsulation of two drugs with markedly different physicochemical characteristics.
View Article and Find Full Text PDFPurpose: Pseudoprogression is an atypical imaging pattern of response to immunotherapy in patients with brain tumors. MR perfusion studies in this field are limited. The purpose of our study is to compare the perfusion features between pseudoprogression lesions in malignant gliomas and brain metastases treated with immunotherapy (iPsP) and the pseudoprogression after chemo-radiation therapy and radiation necrosis after radiation treatment (ChR-PsP & RN).
View Article and Find Full Text PDFNonspecific protein adsorption significantly impacts the performance of biomedical devices in both hemocompatibility and tissue compatibility. Polyzwitterionic coatings are a promising solution. However, conventional zwitterionic coatings always have to rely on sophisticated wet chemistry methods, leading to low controllability and high cost.
View Article and Find Full Text PDFThe worldwide high prevalence of diabetic nephropathy is one of the common causes of renal failure in diabetic patients. Hyperglycemia-caused podocyte injury is considered as a major contributor to diabetic kidney disease, accompanied by a chronic inflammatory condition. Pyroptosis, a characterized inflammatory form of programmed cell death, is believed to be involved in the pathogenesis of diabetic nephropathy.
View Article and Find Full Text PDFBackground: Polycystic ovarian syndrome (PCOS) is one of the major causes encouraging the elevation of androgens, obesity along with menstrual complications. Here we study the effect of Apigenin in rat model of polycystic ovarian syndrome.
Methods: Female Sprague Dawley (SD) rats were treated with Dehydroepiandrosterone (DHEA) (6 mg/100g) opting the post-pubertal approach for developing rat model of polycystic ovarian syndrome, Metformin was used as standard.
Glomerular podocyte damage is considered to be one of the main mechanisms leading to Diabetic nephropathy (DN). However, the relevant mechanism of podocyte injury is not yet clear. This study aimed to investigate the effect of peroxiredoxin 6 (Prdx6) on the pathogenesis of podocyte injury induced by high glucose (HG).
View Article and Find Full Text PDFThe aim of the present study was to evaluate the protective effects of combined atorvastatin and amygdalin in a rat model of endometriosis. Tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), matrix metalloproteinase-2 (MMP-2) and MMP-9 levels in the peritoneal fluid were determined. The expression of TNF-α, IL-6, MMP-2, and MMP-9 mRNA, and the levels of lipid peroxidation, reduced glutathione (GSH), superoxide dismutase (SOD), catalase, and glutathione peroxidase (Gpx) were measured.
View Article and Find Full Text PDFAims: Prognostic significance of apolipoproteins in diabetic retinopathy risk has not been well investigated. The aim of this study was to reveal the relationship between the risk of diabetic retinopathy and the levels of several apolipoproteins and their ratios in a 10-year prospective cohort.
Methods: A total of 1023 diabetic patients without retinopathy were selected from a 10-year hospital-based diabetic cohort.
A minimally invasive glucose biosensor capable of continuous monitoring of subcutaneous glucose has been developed in this study. This sensor was prepared using electropolymerized conductive polymer polyaniline (PANI) nanofibers as an enzyme immobilization material and polyurethane (PU)/epoxy-enhanced polyurethane (E-PU) bilayer coating as a protective membrane. The sensor showed almost the same sensitivity (63nA/mM) and linearity (0-20mM with the correlation coefficient r of 0.
View Article and Find Full Text PDFAssembly of biocompatible nanostructures to retain the enzyme activity and improve the biocatalytic ability is a decisive factor for enhancing the performance of enzyme biosensors. However, there is still a lack of molecular level understandings of the physicochemical interaction mechanism at the interface of biosensor electrodes and enzymes. Here, for the first time at molecular level, the effects of two classic biosensor electrode materials with different electrical properties and morphologies and glucose oxidase (GOD) on retaining the enzyme conformation were analyzed by molecular dynamics simulation.
View Article and Find Full Text PDFIn this study, a versatile fabrication method for coating enzyme-based biosensors with ultrathin antifouling zwitterionic polymer films to meet the challenge of the long-time stability of sensors in vivo was developed. Electrochemically mediated atom transfer radical polymerization (eATRP) was applied to polymerize zwitterionic sulfobetaine methacrylate monomers on the rough enzyme-absorbed electrode surfaces; meanwhile, a refined overall bromination was developed to improve the coverage of polymers on the biosensor surfaces and to maintain the enzyme activity simultaneously for the first time. X-ray photoelectron spectroscopy and atomic force microscopy were used to characterize the properties of the polymer layers.
View Article and Find Full Text PDFA well-controllable electrochemically mediated surface-initiated atom transfer radical polymerization (e-siATRP) method for the fabrication of superlow protein absorption zwitterionic hydrogel coatings based on poly(sulbetaine methacrylate) (pSBMA) was developed in this work. The effects of the electric condition on polymerization as well as its antifouling performances both in vitro and in vivo were also investigated. Different potentials (-0.
View Article and Find Full Text PDFA free-standing graphene silk composite (G/S) film was fabricated via vacuum filtration of a mixed suspension of graphene oxide and silk fibres, followed by chemical reduction. Spiky structured Pt nanospheres were grown on the film substrate by cyclic voltammetry electrodeposition. The electrical and mechanical performance of a single graphene coated silk fibre was investigated.
View Article and Find Full Text PDFGlucose sensors with long life span were fabricated and evaluated in 37°C serum to imitate in vivo conditions. Polyaniline nanofibers were electrodeposited on sensor electrodes for excessive glucose oxidase immobilization to extend the lifetime of sensors. The sensitivity of sensors stored in 37°C bovine serum was stable for 20 days without apparent descents, and still remained 45% of its initial value after 44 days.
View Article and Find Full Text PDFA glucose biosensor based on direct electron transfer of glucose oxidase (GOD) self-assembled on the surface of the electrochemically reduced carboxyl graphene (ERCGr) modified glassy carbon electrode has been reported. X-ray photoelectron spectroscopy (XPS) analyses of ERCGr indicate most of the oxygen-containing groups such as epoxy/ether groups and hydroxyl groups in the carboxyl graphene were eliminated, while carboxylic acid groups remained. GOD was immobilized on the ERCGr modified glassy carbon electrode via self-assembly.
View Article and Find Full Text PDFCXC chemokine recepter-4 (CXCR4) and its ligand, stromal cell-derived factor-1alpha (SDF-1alpha) have been implicated in the organ-specific metastasis of several malignancies. Hca-F and its syngeneic cell line Hca-P are mouse hepatocarcinoma cell lines with high and low potential of lymphatic metastasis, respectively. Previous studies showed that the secretion of matrix metalloproteinases (MMPs) associated with the metastatic ability of Hca-F and Hca-P cell line depending on the lymph node environment.
View Article and Find Full Text PDFInt J Biochem Cell Biol
September 2006
CD147 which is a regulator of matrix metalloproteinase (MMP) production on the surface of many malignant tumor cells, shows a highly specific association with caveolin-1 (Cav-1). As a result of heterogeneous N-glycosylation, CD147 exists in both highly glycosylated form, HG-CD147 ( approximately 40-60kDa) and lowly glycosylated form, LG-CD147 ( approximately 32kDa). This study investigated the possible role of Cav-1 in CD147 glycosylation in the HcaF, HcaP and Hepa1-6 mouse hepatocarcinoma cell lines, which have high, low and no metastatic potential in the lymph nodes, respectively, and in the normal mouse liver cell line IAR-20.
View Article and Find Full Text PDFCaveolin-1 is the major component protein of caveolae and associated with a lot of cellular events such as endocytosis, cholesterol homeostasis, signal transduction, and tumorigenesis. The majority of results suggest that caveolin-1 might not only act as a tumor suppressor gene but also a promoting metastasis gene. In this study, the divergent expression and roles of caveolin-1 were investigated in mouse hepatocarcinoma cell lines Hca-F, Hca-P, and Hepa1-6, which have high, low, and no metastatic potential in the lymph nodes, as compared with normal mouse liver cell line IAR-20.
View Article and Find Full Text PDF