The infected diabetic wound healing is an increasingly severe healthcare problem worldwide. Bacterial infection and the inflammatory microenvironment hinder diabetic wound healing. Meanwhile, the combination of inhibiting bacterial growth and promoting macrophage polarization in the wound microenvironment is beneficial for treating diabetic wounds.
View Article and Find Full Text PDFInfected wound management is a great challenge to healthcare, especially in emergencies such as accidents or battlefields. Hydrogels as wound dressings can replace or supplement traditional wound treatment strategies, such as bandages or sutures. It is significant to develop novel hydrogel-based wound dressings with simple operation, inexpensive, easy debridement, effective antibacterial, biocompatibility, etc.
View Article and Find Full Text PDFIt was greatly significant, but difficult, to develop stimulus-responsive polymeric nanoparticles with efficient protein-loading and protein-delivering properties. Crucial obstacles were the ambiguous protein/nanoparticle-interacting mechanisms and the corresponding inefficient trial-and-error strategies, which brought large quantities of experiments in design and optimization. In this work, a molecular docking-guided universal "segment-functional group-polymer" process was proposed to simplify the previous laborious experimental step.
View Article and Find Full Text PDFDiabetes patients cannot complete effective blood glucose regulation due to their impaired pancreatic function. At present, subcutaneous insulin injection is the only treatment for patients with type 1 and severe type 2 diabetes. However, long-term subcutaneous injection will cause patients with intense physical pain and lasting psychological burden.
View Article and Find Full Text PDFDiabetes has become a serious threat to human health, causing death and pain to numerous patients. Transdermal insulin delivery is a substitute for traditional insulin injection to avoid pain from the injection. Transdermal methods include non-invasive and invasive methods.
View Article and Find Full Text PDFMicrowave has been widely used in many fields, including communication, medical treatment and military industry; however, the corresponding generated radiations have been novel hazardous sources of pollution threating human's daily life. Therefore, designing high-performance microwave absorption materials (MAMs) has become an indispensable requirement. Recently, metal-organic frameworks (MOFs) have been considered as one of the most ideal precursor candidates of MAMs because of their tunable structure, high porosity and large specific surface area.
View Article and Find Full Text PDF