Publications by authors named "Yichi Su"

Inhibitors of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (M) such as nirmatrelvir (NTV) and ensitrelvir (ETV) have proven effective in reducing the severity of COVID-19, but the presence of resistance-conferring mutations in sequenced viral genomes raises concerns about future drug resistance. Second-generation oral drugs that retain function against these mutants are thus urgently needed. We hypothesized that the covalent hepatitis C virus protease inhibitor boceprevir (BPV) could serve as the basis for orally bioavailable drugs that inhibit SARS-CoV-2 M more efficiently than existing drugs.

View Article and Find Full Text PDF

Introduction: Stress may cause prospective escalations in abdominal pain magnitude and accumbal TRPV1 expression, while central neural circuits mediating these stress effects remain unclear.

Methods: Using retrograde tracing methods, we first demonstrated the existence of a medial septal-dorsal lateral septal -accumbal circuit very likely involving social disruption stress-primed escalations in acid-induced writhes and accumbal TRPV1 level. An intersectional viral strategy and virus-carrying hM3Dq and hM4Di DREADDs were, then, employed to selectively modulate GABAergic and cholinergic neuronal activity in medial and dorsal lateral septum.

View Article and Find Full Text PDF

Aberrant kinase activity contributes to the pathogenesis of brain cancers, neurodegeneration, and neuropsychiatric diseases, but identifying kinase inhibitors that function in the brain is challenging. Drug levels in blood do not predict efficacy in the brain because the blood-brain barrier prevents entry of most compounds. Rather, assessing kinase inhibition in the brain requires tissue dissection and biochemical analysis, a time-consuming and resource-intensive process.

View Article and Find Full Text PDF

Bioluminescence imaging (BLI) allows non-invasive visualization of cells and biochemical events in vivo and thus has become an indispensable technique in biomedical research. However, BLI in the central nervous system remains challenging because luciferases show relatively poor performance in the brain with existing substrates. Here, we report the discovery of a NanoLuc substrate with improved brain performance, cephalofurimazine (CFz).

View Article and Find Full Text PDF
Article Synopsis
  • Bioluminescence imaging (BLI) utilizes luciferase reporters to visualize cells and biochemical processes noninvasively in living animals, particularly in rodent models for disease research and therapy evaluation.
  • Despite its usefulness, BLI faces challenges such as low light output and the absorption of light by tissues, which limit its effectiveness for detecting small cell populations in deeper areas and for use in larger animals.
  • Recent advances in luciferase technology aim to enhance the sensitivity of BLI, broadening its potential applications in biological research.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how prior social disruption stress and group testing affect writhing behavior caused by acetic acid-induced visceral pain in mice.
  • Mice exposed to social disruption exhibited more writhing compared to those not exposed, but testing in groups reduced writhing compared to individual tests.
  • Findings suggest that the increased pain response due to stress may involve higher TRPV1 receptor levels, while group testing reduces pain sensitivity possibly by influencing brain function in the medial septum.
View Article and Find Full Text PDF

Vicarious learning represents a far-reaching value for the survival of social animals. Adrenal hormones are known to affect many forms of learning, yet the roles of adrenal hormones in vicarious learning remain unexplored. This study was undertaken to assess whether observation-stimulated corticosterone (CORT) secretion may affect the magnitude of a vicarious fear conditioning.

View Article and Find Full Text PDF

Sensitive detection of two biological events in vivo has long been a goal in bioluminescence imaging. Antares, a fusion of the luciferase NanoLuc to the orange fluorescent protein CyOFP, has emerged as a bright bioluminescent reporter with orthogonal substrate specificity to firefly luciferase (FLuc) and its derivatives such as AkaLuc. However, the brightness of Antares in mice is limited by the poor solubility and bioavailability of the NanoLuc substrate furimazine.

View Article and Find Full Text PDF

Cyclic dinucleotides (CDNs) trigger the innate immune response in eukaryotic cells through the stimulator of interferon genes (STING) signaling pathway. To decipher this complex cellular process, a better correlation between structure and downstream function is required. Herein, we report the design and immunostimulatory effect of a novel group of c-di-GMP analogues.

View Article and Find Full Text PDF

Genetically encodable fluorescent biosensors provide spatiotemporal information on their target analytes in a label-free manner, which has enabled the study of cell biology and signaling in living cells. Over the past three decades, fueled by the development of a wide palette of fluorescent proteins, protein-based fluorescent biosensors against a broad array of targets have been developed. Recently, with the development of fluorogenic RNA aptamer-dye pairs that function in live cells, RNA-based fluorescent (RBF) biosensors have emerged as a complementary class of biosensors.

View Article and Find Full Text PDF

In bacteria and archaea, small RNAs (sRNAs) regulate complex networks through antisense interactions with target mRNAs in trans, and riboswitches regulate gene expression in based on the ability to bind small-molecule ligands. Although our understanding and characterization of these two important regulatory RNA classes is far from complete, these RNA-based mechanisms have proven useful for a wide variety of synthetic biology applications. Besides classic and contemporary applications in the realm of metabolic engineering and orthogonal gene control, this review also covers newer applications of regulatory RNAs as biosensors, logic gates, and tools to determine RNA-RNA interactions.

View Article and Find Full Text PDF

Riboswitches are common gene regulatory units mostly found in bacteria that are capable of altering gene expression in response to a small molecule. These structured RNA elements consist of two modular subunits: an aptamer domain that binds with high specificity and affinity to a target ligand and an expression platform that transduces ligand binding to a gene expression output. Significant progress has been made in engineering novel aptamer domains for new small molecule inducers of gene expression.

View Article and Find Full Text PDF

In mammalian cells, the second messenger (2'-5',3'-5') cyclic guanosine monophosphate-adenosine monophosphate (2',3'-cGAMP), is produced by the cytosolic DNA sensor cGAMP synthase (cGAS), and subsequently bound by the stimulator of interferon genes (STING) to trigger interferon response. Thus, the cGAS-cGAMP-STING pathway plays a critical role in pathogen detection, as well as pathophysiological conditions including cancer and autoimmune disorders. However, studying and targeting this immune signaling pathway has been challenging due to the absence of tools for high-throughput analysis.

View Article and Find Full Text PDF

High-throughput enzyme activity screens are essential for target characterization and drug development, but few assays employ techniques or reagents that are applicable to both in vitro and live cell settings. Here, we present a class of selective and sensitive fluorescent biosensors for S-adenosyl-l-homocysteine (SAH) that provide a direct "mix and go" activity assay for methyltransferases (MTases), an enzyme class that includes several cancer therapeutic targets. Our riboswitch-based biosensors required an alternate inverted fusion design strategy, but retained full selectivity for SAH over its close structural analogue, the highly abundant methylation cofactor S-adenosyl-l-methionine (SAM).

View Article and Find Full Text PDF

Cyclic dinucleotides are an expanding class of signaling molecules that control many aspects of bacterial physiology. A synthase for cyclic AMP-GMP (cAG, also referenced as 3'-5', 3'-5' cGAMP) called DncV is associated with hyperinfectivity of Vibrio cholerae but has not been found in many bacteria, raising questions about the prevalence and function of cAG signaling. We have discovered that the environmental bacterium Geobacter sulfurreducens produces cAG and uses a subset of GEMM-I class riboswitches (GEMM-Ib, Genes for the Environment, Membranes, and Motility) as specific receptors for cAG.

View Article and Find Full Text PDF

Purpose: Hepatocyte growth factor (HGF) and its receptor Met are involved in the initiation, progression, and metastasis of numerous systemic and central nervous system tumors. Thus, an anti-HGF monoclonal antibody (mAb) capable of blocking the HGF-Met interaction could have broad applicability in cancer therapy.

Experimental Design: An anti-HGF mAb L2G7 that blocks binding of HGF to Met was generated by hybridoma technology, and its ability to inhibit the various biological activities of HGF was measured by in vitro assays.

View Article and Find Full Text PDF