Publications by authors named "Yichi Lu"

Introducing glycans represents an efficient chemical approach to improve the pharmacological properties of therapeutic biomolecules. Herein, we report an efficient synthesis of glycoconjugates through chlorooxime-thiol conjugation. The reactive glycosyl chlorooximes, derived from pyranoses or furanoses, readily couple to a wide range of thiol-containing substrates, including peptides, sugars, and thiophenols.

View Article and Find Full Text PDF

At present, enzyme debridement preparation has shown a good curative effect on eschar removal of burn wounds. Keratinase has shown great potential in enzymatic debridement because of its good fibrin-degrading ability. In this study, the debridement of keratinase was examined by using a third degree burn wound model in rats.

View Article and Find Full Text PDF

Current hemostatic agents or dressings are not efficient under extremely hot and cold environments due to deterioration of active ingredients, water evaporation and ice crystal growth. To address these challenges, we engineered a biocompatible hemostatic system with thermoregulatory properties for harsh conditions by combining the asymmetric wetting nano-silica aerogel coated-gauze (AWNSA@G) with a layer-by-layer (LBL) structure. Our AWNSA@G was a dressing with a tunable wettability prepared by spraying the hydrophobic nano-silica aerogel onto the gauze from different distances.

View Article and Find Full Text PDF

In this study, electrospun nanofibers (NFs) used in trauma dressings were prepared using silk fibroin (SF) and gelatin (GT) as materials and highly volatile formic acid as the solvent, with three different concentrations of propolis extracts (EP), which were loaded through a simple process. The resulting samples were characterized by surface morphology, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), contact angle meter, water absorption, degradation rate, and mechanical property tests. The incorporation of propolis improved its antibacterial properties against , and , compared to those of the silk gelatin nanofiber material (SF/GT) alone.

View Article and Find Full Text PDF

The treatment of full-thickness cutaneous wounds remains a significant challenge in clinical therapeutics. Exogenous growth factor (GF) has been applied in clinics to promote wound healing. However, the retention of GF on the wound bed after its direct application to the wound surface is difficult.

View Article and Find Full Text PDF

The Nocardia rubra cell wall skeleton (Nr-CWS) is an immunomodulator used clinically for its ability to modulate the body's immune function. Macrophages are an important hub of the immune response during wound healing. In this study, we hypothesized that a Nr-CWS could modulate macrophage physiological activities, polarize macrophages toward M2, and promote wound healing.

View Article and Find Full Text PDF

Introduction: Numerous studies have shown that mesenchymal stem cells (MSCs) promote cutaneous wound healing via paracrine signaling. Our previous study found that the secretome of MSCs was significantly amplified by treatment with IFN-γ and TNF-α (IT). It has been known that macrophages are involved in the initiation and termination of inflammation, secretion of growth factors, phagocytosis, cell proliferation and collagen deposition in wound, which is the key factor during wound healing.

View Article and Find Full Text PDF

Background: Numerous studies have shown that mesenchymal stromal cells (MSCs) promote cutaneous wound healing via paracrine signaling. Our previous study found that the secretome of MSCs was significantly amplified by treatment with IFN-γ and TNF-α (IT). It has been known that macrophages are involved in the initiation and termination of inflammation, secretion of growth factors, phagocytosis, cell proliferation, and collagen deposition in wound, which is the key factor during wound healing.

View Article and Find Full Text PDF

Neuroinflammation hinders repair of the central nervous system (CNS). Stem cell transplantation is a very promising approach for treatment of CNS injuries. However, it is difficult to select seed cells that can both facilitate nerve regeneration and improve the microenvironment in the CNS.

View Article and Find Full Text PDF

Human dermal fibroblasts (HDFs) play important roles in all stages of wound healing. However, in nonhealing wounds, fibroblasts are prone to aging, resulting in insufficient migration, proliferation and secretion functions. Recent studies have suggested that mesenchymal stromal cells (MSCs) are conducive to wound healing and cell growth through paracrine cytokine signaling.

View Article and Find Full Text PDF
Article Synopsis
  • Stem cell transplantation shows promise in treating spinal cord injuries but selecting the right type of stem cells remains a challenge.
  • * In this study, researchers focused on pluripotent stem cells called Muse cells, which were differentiated in the lab into neural precursor cells (Muse-NPCs) using a special medium.
  • * The induced Muse-NPCs demonstrated the ability to produce different types of neural cells and improved motor function when transplanted into rats with spinal cord injuries, suggesting potential for future therapies.
View Article and Find Full Text PDF