Publications by authors named "Yichao Hou"

Optimizing the electronic structure with increasing intrinsic stability is a usual method to enhance the catalysts' performance. Herein, a series of cerium dioxide (CeO) based solid solution materials is synthesized via substituting Ce atoms with transition metal (Co, Cu, Ni, etc.), in which CoCeO shows optimized band structure because of electron transition in the reaction, namely Co (3d4s) + Ce (4f5d 6s) → Co (3d4s) + Ce (4f5d6s), with more stable electronic configuration.

View Article and Find Full Text PDF

The utilization of rare earth elements to regulate the interaction between catalysts and oxygen-containing species holds promising prospects in the field of oxygen electrocatalysis. Through structural engineering and adsorption regulation, it is possible to achieve high-performance catalytic sites with a broken activity-stability tradeoff. Herein, this work fabricates a hierarchical CeO/NiCo hydroxide for electrocatalytic oxygen evolution reaction (OER).

View Article and Find Full Text PDF

Small bowel vascular malformation disease (SBVM) commonly causes obscure gastrointestinal bleeding (OGIB). However, the pathogenetic mechanism and the role of lncRNAs in SBVM remain largely unknown. Here, we found that hypoxia and low-glucose environments co-augment angiogenesis and existed in SBVM.

View Article and Find Full Text PDF

The low coverage rate of anode OH adsorption under high current density conditions has become an important factor restricting the development of an industrial alkaline water electrolyzer (AWE). Here, we present our rare earth modification promotion strategy on using the rare earth oxygen-friendly interface to increase the OH coverage of the NiS surface for efficient AWE anode catalysis. Density functional theory calculations predict that rare earths can enhance the coverage of surface OH, and the synthesis reaction mechanism is discussed in the synthesis process spectrum.

View Article and Find Full Text PDF

Copper-based electrocatalysts effectively produce multicarbon (C ) compounds during the electrochemical CO reduction (CO RR). However, big challenges still remain because of the chemically unstable active sites. Here, cerium is used as a self-sacrificing agent to stabilize the Cu of CuS, due to the facile Ce /Ce redox.

View Article and Find Full Text PDF

Dynamic reconstruction of metal sulphides during electrocatalytic oxygen evolution reaction (OER) has hampered the acquisition of legible evidence for comprehensively understanding the phase-transition mechanism and electrocatalytic activity origin. Herein, modelling on a series of cobalt-nickel bimetallic sulphides, we for the first time establish an explicit and comprehensive picture of their dynamic phase evaluation pathway at the pre-catalytic stage before OER process. By utilizing the in-situ electrochemical transmission electron microscopy and electron energy loss spectroscopy, the lattice sulphur atoms of (NiCo)S particles are revealed to be partially substituted by oxygen from electrolyte to form a lattice oxygen-sulphur coexisting shell surface before the generation of reconstituted active species.

View Article and Find Full Text PDF

Short-chain fatty acids (SCFAs) are important metabolites of the intestinal flora that are closely related to the development of non-alcoholic fatty liver disease (NAFLD). Moreover, studies have shown that macrophages have an important role in the progression of NAFLD and that a dose effect of sodium acetate (NaA) on the regulation of macrophage activity alleviates NAFLD; however, the exact mechanism of action remains unclear. This study aimed to assess the effect and mechanism of NaA on regulating the activity of macrophages.

View Article and Find Full Text PDF

The frequency of p53 mutations in colorectal cancer (CRC) is approximately 40-50%. A variety of therapies are being developed to target tumors expressing mutant p53. However, potential therapeutic targets for CRC expressing wild-type p53 are rare.

View Article and Find Full Text PDF

Electrocatalytic reduction of CO to formate is considered as a promising method to achieve carbon neutrality, and the introduction of heteroatoms is an effective strategy to improve the catalytic activity and selectivity of catalysts. However, the structural reconstruction behavior of catalysts driven by voltage is usually ignored. Therefore, we used Cu/BiS as a model to reveal the dynamic reduction process in different atmospheric environments.

View Article and Find Full Text PDF

To explore highly selective targeting molecules of colorectal cancer (CRC) is a challenge. We previously identified a twelve-amino acid peptide (LPKTVSSDMSLN, namely P-LPK) by phage display technique which may specifically binds to CRC cells. Here we show that P-LPK selectively bind to a panel of human CRC cell lines and CRC tissues.

View Article and Find Full Text PDF

Symbiotic gut microbiota in early life plays a vital role in human health, and changes in its communication and function are associated with various complex disorders. In this study, we analyzed the gut flora communication of 6 infants at 4 months of age and determined the disturbances related to antibiotic treatment. By the culturomics and Single Molecule Real-time sequencing methods, a total of 6234 strains were divided into 16 genera and 45 species.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers. It thrives in a malnourished environment; however, little is known about the mechanisms by which PDAC cells actively promote aerobic glycolysis to maintain their metabolic needs. Gene Expression Omnibus (GEO) was used to identify differentially expressed miRNAs.

View Article and Find Full Text PDF

Gut microbial metabolites, SCFAs, were related with the occurrence and development of Parkinson's disease (PD). But the effects of different short-chain fatty acids (SCFAs) on PD and involving mechanisms are still undefined. In this study we evaluate the effects of three dominant SCFAs (acetate, propionate and butyrate) on motor damage, dopaminergic neuronal degeneration and underlying neuroinflammation related mechanisms in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mice.

View Article and Find Full Text PDF

Exploring novel anticancer drugs to optimize the efficacy may provide a benefit for the treatment of colorectal cancer (CRC). Disulfiram (DSF), as an antialcoholism drug, is metabolized into diethyldithiocarbamate-copper complex (CuET) in vivo, which has been reported to exert the anticancer effects on various tumors in preclinical studies. However, little is known about whether CuET plays an anti-cancer role in CRC.

View Article and Find Full Text PDF

Most colorectal cancer (CRC) are characterized by allele loss of the genes located on the short arm of chromosome 17 (17p13.1), including the tumor suppressor p53 gene. Although important, p53 is not the only driver of chromosome 17p loss.

View Article and Find Full Text PDF

Lipopolysaccharides (LPS), a main component of the Gram-negative bacterial cell wall, can damage the epithelial wall barrier and induce chronic intestinal inflammation. The purpose of this study is to evaluate whether the novel L. rhamnosus could alleviate intestinal inflammation and damage induced by LPS and explore the possible underlying molecular mechanism.

View Article and Find Full Text PDF

Chemoresistance is responsible for most colorectal cancer (CRC) related deaths. In this study, we found that dichloroacetate (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, can be used as a sensitizer for oxaliplatin (L-OHP) chemoresistant CRC cells. The aim of this study was to explore the ability of DCA to overcome L-OHP resistance in CRC cells and to identify the underlying molecular mechanisms.

View Article and Find Full Text PDF

The development of chemoresistance remains a major challenge that accounts for colorectal cancer (CRC) lethality. Dichloroacetate (DCA) was originally used as a metabolic regulator in the treatment of metabolic diseases; here, DCA was assayed to identify the mechanisms underlying the chemoresistance of CRC. We found that DCA markedly enhanced chemosensitivity of CRC cells to fluorouracil (5-FU), and reduced the colony formation due to high levels of apoptosis.

View Article and Find Full Text PDF

Oxidative stress is the basic reason for aging and age-related diseases. In this study, we investigated the protective effect of 2 strains of lactic acid bacteria (LAB), Lactobacillus rhamnosus GG and L. plantarum J26, against oxidative stress in Caco-2 cells, and gave an overview of the mechanisms of lactic acid bacteria antioxidant activity using digital gene expression profiling.

View Article and Find Full Text PDF

Existing data suggest that proton pump inhibitors (PPIs), particularly omeprazole, have significant anti-tumor action in monotherapy and or combination chemotherapy. Hedgehog (Hh) signaling pathway represents a leading candidate as a molecular mediator of Barrett's esophagus (BE). Studies have indicated reduced miRNAs in BE progression, however, little is known about the latent anti-neoplasm effects of miRNAs in BE cells.

View Article and Find Full Text PDF

Colon Cancer-Associated Transcript 2 (CCAT2) has been demonstrated associated with clinical outcomes in various tumors. However, the results from each study were unfortunately insufficient and not completely consistent. Therefore, we conduct a systematic meta-analysis to evaluate the value for a feasible biomarker for metastasis and prognosis.

View Article and Find Full Text PDF

 Magnifying endoscopy with narrow-band imaging (M-NBI) has been widely used in the differential diagnosis of deep submucosal colorectal cancers (dSMCs) from superficial submucosal cancers (sSMCs) and intramucosal neoplasms. We aimed to pool the diagnostic efficacy of M-NBI and compare it with that of magnifying chromoendoscopy (M-CE) in diagnosing colorectal dSMC.  PubMed, EMBASE, and the Cochrane Library were searched to identify eligible studies.

View Article and Find Full Text PDF

Rectal nonsteroidal anti-inflammatory drugs (NSAIDs) are not commonly used clinically for preventing post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis. To evaluate the efficacy and safety of NSAIDs for post-ERCP prophylaxis, we systematically reviewed sixteen randomized controlled trials (involving 6458 patients) that compared rectal NSAIDs with placebo or no treatment for post-ERCP pancreatitis prophylaxis updated to August 2016. GRADE framework was used to assess the quality of evidence.

View Article and Find Full Text PDF

Background: Itraconazole has been proved therapeutically effective against a variety of human cancers. This study assessed the effect of itraconazole on the Hedgehog (Hh) pathway and proliferation of human gastric cancer cells.

Methods: CCK-8 assay and colony formation assay were used to assess the effects of itraconazole on proliferation of gastric cancer cells.

View Article and Find Full Text PDF