Publications by authors named "Yichao Bai"

Liquid exfoliation is a scalable and effective method for synthesizing 2D nanosheets (NSs) but often induces contamination and defects. Here, liquid metal gallium (Ga) is used to exfoliate bulk layered materials into 2D NSs at near room temperature, utilizing the liquid surface tension and Ga intercalation to disrupt Van der Waals (vdW) forces. In addition, the process can transform the 2H-phase of transition metal dichalcogenides into the 1T'-phase under ambient conditions.

View Article and Find Full Text PDF

The detection of monoamine neurotransmitters is of paramount importance as the neurotransmitters are the chemical messengers regulating the gut-brain axis (GBA). It requires real-time, ultrasensitive, and selective sensing of the neurotransmitters in the gastric/intestinal fluid. However, multi-components present in the gastric/intestinal fluid make sensing challenging to achieve in terms of ultra-high sensitivity and selectivity.

View Article and Find Full Text PDF

The gut-brain axis (GBA) is an important information pathway connecting the brain, the central nervous system (CNS), and the gastrointestinal (GI) tract. On the one hand, gut microbiota can influence the function brain through GBA; on the other hand, the brain can also change the structural composition of gut microbiota via GBA. It contains a myriad of biosignals, such as monoamines, inflammatory cytokines, and macro-biomolecules, as the information carriers.

View Article and Find Full Text PDF
Article Synopsis
  • Covalent organic frameworks (COFs) are known for their high surface area and catalytic properties, but traditional methods often produce insufficient or unstable forms.
  • This research introduces a new approach using chemical vapor deposition (CVD) to create large, uniform two-dimensional COF films with controllable thickness, leveraging reversible Schiff base polycondensation.
  • The resulting PyTTA-TPA COF films demonstrate impressive carrier mobility and high electrocatalytic activity for hydrogen evolution reactions, highlighting their potential for diverse applications in 2D materials.
View Article and Find Full Text PDF

Facile synthesis and post-processing of covalent organic frameworks (COFs) under mild synthetic conditions are highly sought after and important for widespread utilizations in catalysis and energy storage. Here we report the synthesis of the chemically stable aza-fused COFs BPT-COF and PT-COF by a liquid-phase method. The process involves the spontaneous polycondensation of vicinal diamines and vicinal diketones, and is driven by the near-equilibrium growth of COF domains at a very low monomer concentration.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) with well-defined supramolecular structures and high surface-area-to-volume ratio have received extensive attention on their adsorption of contaminants from micro- to nano-size. Here, we studied the adsorption mechanisms of three typical nanoplastics (NP), including polyethylene (PE), nylon-6 (PA 6), and polyethylene terephthalate (PET) on chemically stable COFs (TpPa-X, X = H, CH, OH, NO and F) by molecular dynamics simulations. Depending on molecular structure and surface composition, two distinct interactions-electrostatic interaction and van der Waals (vdW) interaction-are identified to be responsible for the adsorption of different NP pollutants on TpPa-X.

View Article and Find Full Text PDF

2D metal-organic framework (MOF) film as the active layer show promising application prospects in various fields including sensors, catalysis, and electronic devices. However, exploring the application of 2D MOF film in the field of artificial synapses has not been implemented yet. In this work, we fabricated a novel 2D MOF film (Cu-THPP, THPP=5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H,23H-porphine), and further used it as an active layer to explore the application in the simulation of human brain synapses.

View Article and Find Full Text PDF

The preparation of large-area 2D conductive metal-organic framework (MOF) films remains highly desirable but challenging. Here, inspired by the capillary phenomenon, a face-to-face confinement growth method to grow conductive 2D Cu (TCPP) (TCPP = meso-tetra(4-carboxyphenyl)porphine) MOF films on dielectric substrates is developed. Trace amounts of solutions containing low-concentration Cu and TCPP are pumped cyclically into a micropore interface to produce this growth.

View Article and Find Full Text PDF

Owing to their excellent physical and electrical properties, metal-organic framework (MOF) materials with well-defined supramolecular structures have received extensive research attention. However, the fabrication of large-area two-dimensional (2D) MOF films is still a significant challenge. Herein, we propose a novel electrochemical (EC) synthesis method for the preparation of large-area Cu (HHTP) MOF film on single-crystal Cu (100) anode.

View Article and Find Full Text PDF