Publications by authors named "Yichang Ma"

Anion exchange membrane fuel cells (AEMFCs) and water electrolysis (AEMWE) show great application potential in the field of hydrogen energy conversion technology. However, scalable anion exchange membranes (AEMs) with desirable properties are still lacking, which greatly hampers the commercialization of this technology. Herein, we propose a series of novel multiblock AEMs based on ether-free poly(biphenyl ammonium-b-biphenyl phenyl)s (PBPA-b-BPPs) that are suitable for use in high performance AEMFC and AEMWE systems because of their well-formed microphase separation structures.

View Article and Find Full Text PDF

Anion exchange membrane (AEM) fuel cells have gained significant interest in recent years due to their promising applications in cost-effective and environmentally friendly energy conversion. Among various factors that affect their performance, water content plays an important role in the conductivity and stability of AEMs. However, the effect of the hydration level on the microstructure of AEMs and the correlation between the microstructure and macroconductivity have not been systematically investigated.

View Article and Find Full Text PDF

In order to separate palladium (II) from electroplating wastewaters, poly(4-vinylpyridine)-b-polysulfone-b-poly(4-vinylpyridine) (P4VP-PSF-P4VP) / polysulfone blend membranes were fabricated by combining non-solvent induced phase separation, surface segregation and self-assembly of block copolymer. Amphiphilic P4VP-PSF-P4VP was used as the membrane base material, which was synthesized by introducing the functional monomer of 4-vinylpyridine (4-VP), and polysulfone as the additive. Effects of blend ratio and 4-VP content on membrane performance, such as structure, hydrophilicity, pure water flux and adsorption capacity towards Pd (II), were investigated.

View Article and Find Full Text PDF