Publications by authors named "Yicai Dong"

Contact resistance has become one of the main bottlenecks that hinder further improvement of mobility and integration density of organic field-effect transistors (OFETs). Much progress has been made in reducing contact resistance by modifying the electrode/semiconductor interface and decreasing the crystal thickness, however, the development of new organic semiconductor materials with low contact resistance still faces many challenges. Here, 2,6-bis-phenylethynyl-anthracene (BPEA) is found, which is a material that combines high mobility with low contact resistance.

View Article and Find Full Text PDF

High-performance solar-blind photodetectors are widely studied due to their unique significance in military and industrial applications. Yet the rational molecular design for materials to possess strong absorption in solar-blind region is rarely addressed. Here, an organic solar-blind photodetector is reported by designing a novel asymmetric molecule integrated strong solar-blind absorption with high charge transport property.

View Article and Find Full Text PDF

The power conversion efficiencies (PCEs) of small molecule acceptor (SMA)-based organic solar cells have already exceeded 18%. However, the development of polymer acceptors still lags far behind their SMA counterparts mainly due to the lack of efficient polymer acceptors. Herein, a series of polymer acceptors named PY-X (with X being the branched alkyl chain) are designed and synthesized by employing the same central core with the SMA L8-BO but with different branched alkyl chains on the pyrrole motif.

View Article and Find Full Text PDF

A novel p-type organic semiconductor with high thermal stability is developed by simply incorporating cyclohexyl substituted aryl groups into the 2,6-position of anthracene, namely 2,6-di(4-cyclohexylphenyl)anthracene (DcHPA), and a similar compound with linear alkyl chain, 2,6-di(4--hexylphenyl)anthracene (DnHPA), is also studied for comparison. DcHPA shows sublimation temperature around 360°C, and thin film field-effect transistors of DcHPA could maintain half of the original mobility value when heated up to 150°C. Corresponding DnHPA has sublimation temperature of 310°C and the performance of its thin film devices decreases by about 50% when heated to 80°C.

View Article and Find Full Text PDF