Random walks including non-nearest-neighbor jumps appear in many real situations such as the diffusion of adatoms and have found numerous applications including PageRank search algorithm; however, related theoretical results are much less for this dynamical process. In this paper, we present a study of mixed random walks in a family of fractal scale-free networks, where both nearest-neighbor and next-nearest-neighbor jumps are included. We focus on trapping problem in the network family, which is a particular case of random walks with a perfect trap fixed at the central high-degree node.
View Article and Find Full Text PDFIt has been recently reported that the reciprocity of real-life weighted networks is very pronounced, however its impact on dynamical processes is poorly understood. In this paper, we study random walks in a scale-free directed weighted network with a trap at the central hub node, where the weight of each directed edge is dominated by a parameter controlling the extent of network reciprocity. We derive two expressions for the mean first passage time (MFPT) to the trap, by using two different techniques, the results of which agree well with each other.
View Article and Find Full Text PDFFor a random walk on a network, the mean first-passage time from a node i to another node j chosen stochastically, according to the equilibrium distribution of Markov chain representing the random walk is called the Kemeny constant, which is closely related to the navigability on the network. Thus, the configuration of a network that provides optimal or suboptimal navigation efficiency is a question of interest. It has been proved that complete graphs have the exact minimum Kemeny constant over all graphs.
View Article and Find Full Text PDF