Ovarian cancer (OC) is one of the three most common malignant tumors of the female reproductive system, with the highest mortality rate among gynecologic malignancies. Like other tumors, OC cells undergo metabolic reprogramming phenomenon and convert glucose metabolism into "aerobic glycolysis" and generate a high concentration of lactate, i.e.
View Article and Find Full Text PDFBreast cancer (BC) is a major malignant tumor in females and the incidence rate of BC has increased worldwide in recent years. N‑methyladenosine (mA) is a methylation modification that occurs extensively in eukaryotic RNA. The abnormal expression of mA and related regulatory proteins can activate or inhibit certain signal pathways or oncogenes, thus affecting the proliferation, metastasis and prognosis of BC.
View Article and Find Full Text PDFBreast cancer is one of the tumors with the highest prevalence rate among women in the world, and its BRCA1/2 gene is a common mutation site. Talazoparib, as a targeted PARP inhibitor, can effectively control the occurrence and development of breast cancer with BRCA1/2 gene mutation, and play a therapeutic role. Based on the findings from the Phase III EMBRACE trial (NCT01945775 clinical trial), our analysis reveals that the talazoparib group demonstrated a significant extension in progression-free survival, along with improved response markers and patient-reported outcomes when compared to conventional therapies.
View Article and Find Full Text PDFProstate cancer (PCa) affects males of all racial and ethnic groups, and leads to higher rates of mortality in those belonging to a lower socioeconomic status due to the late detection of the disease. PCa affects middle‑aged males between the ages of 45 and 60 years, and is the highest cause of cancer‑associated mortality in Western countries. As the most abundant and common mRNA modification in higher eukaryotes, N‑methyladenosine (mA) is widely distributed in mammalian cells and influences various aspects of mRNA metabolism.
View Article and Find Full Text PDFMetal-backboned polymers (MBPs), with a unique backbone consisting of bonded metal atoms, are promising for optic, electric, magnetic, and thermoelectric fields. However, the application of MBP remains relatively understudied. Here, we develop a shear-induced orientation method to construct a flexible nickel-backboned polymer/carbon nanotube (NBP/CNT) thermoelectric composite fiber.
View Article and Find Full Text PDFLiver cancer is one of the most common cancers in the world and a primary cause of cancer-related death. In recent years, despite the great development of diagnostic methods and targeted therapies for liver cancer, the incidence and mortality of liver cancer are still on the rise. As a universal post-transcriptional modification, N6-methyladenosine (m6A) modification accomplishes a dynamic and reversible m6A modification process, which is executed by three types of regulators, methyltransferases (called writers), demethylases (called erasers) and m6A-binding proteins (called readers).
View Article and Find Full Text PDFMol Cell Biochem
October 2024
Hepatocellular carcinoma (HCC) is the sixed most common malignant tumor in the world. The study for HCC is mired in the predicament confronted with the difficulty of early diagnosis and high drug resistance, the survival rate of patients with HCC being low. Ferroptosis, an iron-dependent cell death, has been discovered in recent years as a cell death means with tremendous potential to fight against cancer.
View Article and Find Full Text PDFBackground: Breast cancer (BC) is one of the most common malignant tumors in women. In addition, human epidermal growth factor receptor 2-positive (HER2+) BC is overexpressed in 25% of BC patients, resulting in the predicament of poor prognosis. Although first- and second-line treatments have been established, optimum third-line treatment is still mired in controversies for HER2+ metastatic BC (mBC).
View Article and Find Full Text PDFFlexible batteries based on gel electrolytes with high safety are promising power solutions for wearable electronics but suffer from vulnerable electrode-electrolyte interfaces especially upon complex deformations, leading to irreversible capacity loss or even battery collapse. Here, a supramolecular sol-gel transition electrolyte (SGTE) that can dynamically accommodate deformations and repair electrode-electrolyte interfaces through its controllable rewetting at low temperatures is designed. Mediated by the micellization of polypropylene oxide blocks in Pluronic and host-guest interactions between α-cyclodextrin (α-CD) and polyethylene oxide blocks, the high ionic conductivity and compatibility with various salts of SGTE afford resettable electrode-electrolyte interfaces and thus constructions of a series of highly durable, flexible aqueous zinc batteries.
View Article and Find Full Text PDFConstructing the backbones of polymers with metal atoms is an attractive strategy to develop new functional polymeric materials, but it has yet to be studied due to synthetic challenges. Here, metal atoms are interconnected as the backbones of polymers to yield metal-backboned polymers (MBPs). Rational design of multidentate ligands synthesized via an efficient iterative approach leads to the successful construction of a series of nickel-backboned polymers (NBPs) with well-defined lengths and up to 21 nickel atoms, whose structures are systematically confirmed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2021
Achieving high-current-density and high-area-capacity operation of Li metal anodes offers promising opportunities for high-performing next-generation batteries. However, high-rate Li deposition suffers from undesired Li-ion depletion especially at the electrolyte-anode interface, which compromises achievable capacity and lifetime. Here, electronegative graphene quantum dots are synthesized and assembled into an ultra-thin overlayer capable of efficient Li-ion adsorbing at the nanoscale on Li-metal to fully relieve Li-ion depletion.
View Article and Find Full Text PDFFerroptosis is a form of cell death characterized by non-apoptosis induced by small molecules in tumors. Studies have demonstrated that ferroptosis regulates the biological behaviors of tumors. Therefore, genes that control ferroptosis can be a promising candidate bioindicator in tumor therapy.
View Article and Find Full Text PDFAn efficient environmentally friendly purely-physical ice-microcrystal pore-forming strategy, consisting of three steps including the water-swelling biomass process utilizing N-methylmorpholine-N-oxide, freeze-drying and one-step carbonization, was developed to prepare a biomass-derived super-flexible high-performance carbon film electrode capable of being repeatedly folded.
View Article and Find Full Text PDF