Natural building blocks like chitins for self-assembling into complex materials have garnered significant interest owing to the inherent and diverse functionalities. However, challenges persist in the assembly of chitin-based composites, primarily stemming from chitin's poor solubility and compatibility. Herein, a quercetin-mediated multiple crosslinking strategy was developed to enhance compatibility by quercetin-mediated interfacial interactions between chitin and inorganic materials, achieving a series of chitin-based composite hydrogels with high performances.
View Article and Find Full Text PDFElectrocatalytic urea synthesis under ambient conditions offers a promising alternative strategy to the traditional energy-intensive urea industry protocol. Limited by the electrostatic interaction, the reduction reaction of anions at the cathode in the electrocatalytic system is not easily achievable. Here, we propose a novel strategy to overcome electrostatic interaction via pulsed electroreduction.
View Article and Find Full Text PDFBamboo, featuring fast growth rate and high cellulose content, is considered to be one of the most attractive feedstocks for degradable bio-materials as a substitute for plastics. However, those was limited to the fields of bamboo structural materials mainly by physical processes. Herein, we report a facile continuous wet extrusion strategy for scalable manufacturing of anisotropic regenerated cellulose films in alkali/urea aqueous solution for the first time.
View Article and Find Full Text PDFCellulose, often considered a highly promising substitute for petroleum-based plastics, offers several compelling advantages, including abundant availability, cost-effectiveness, environmental friendliness, and biodegradability. However, its inherent highly crystalline structure and extensive hydrogen-bonded network pose challenges for processing and recycling. In this study, we introduce the concept of cellulose vitrimers (CVs), wherein dynamic bonds are incorporated to reconfigure the hydrogen-bonded network, resulting in a mechanically robust, highly transparent material.
View Article and Find Full Text PDFSuper-wetting interface materials have shown great potential for applications in oil-water separation. Hydrogel-based materials, in particular, have been extensively studied for separating water from oily wastewater due to their unique hydrophilicity and excellent anti-oil effect. In this study, a superhydrophilic and underwater superoleophobic bamboo cellulose hydrogel-coated mesh was fabricated using a feasible and eco-friendly dip-coating method.
View Article and Find Full Text PDFThe cellulose film, exhibiting color alterations in response to external stimuli, presents itself as a promising functional material. In this study, a universal dissolution-regeneration technique was employed to manufacture a transparent, regenerated cellulose film, characterized by its reversible multi-stimulus discoloration property. This functional cellulose film, endowed with both photochromic and acid-chromic attributes, was synthesized through the introduction of a cellulose-grafted azobenzene derivative into the cellulose solution.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2023
Thermally triggered spatial symmetry breaking in traditional ferroelectrics has been extensively studied for manipulation of the ferroelectricity. However, photoinduced molecular orbital breaking, which is promising for optical control of ferroelectric polarization, has been rarely explored. Herein, for the first time, we synthesized a homochiral fulgide organic ferroelectric crystal (E)-(R)-3-methyl-3-cyclohexylidene-4-(diphenylmethylene)dihydro-2,5-furandione (1), which exhibits both ferroelectricity and photoisomerization.
View Article and Find Full Text PDFBackground: The complications of large-volume fat grafting (LVFG) for breast augmentation remain unpredictable and include palpable breast nodules, oil cysts, and calcifications.
Aims: This study was aimed to provide an optimal treatment option for breast nodules after LVFG and evaluate their pathological characteristics.
Patients/methods: We effectively performed complete resection of breast nodules in 29 patients after LVFG using a minimal skin incision with the vacuum-assisted breast biopsy (VABB) system under ultrasound guidance.
Hemicellulose removal from bleached bamboo pulp is key to produce qualified dissolving pulps. In this work, alkali/urea aqueous solution was firstly applied to remove hemicellulose in bleached bamboo pulp (BP). The effect of urea usage, time and temperature on the hemicellulose content of BP was studied.
View Article and Find Full Text PDFThis work proposed a promising biorefinery method for the deconstruction of moso bamboo by using p-toluenesulfonic acid (P-TsOH) pretreatment to product high-purity cellulose (dissolving pulp). The cellulose pulp with high α-cellulose content (82.36 %) was successfully prepared for 60 min at low pretreatment temperature (90 °C) and atmospheric pressure.
View Article and Find Full Text PDFBackground: Adipose tissue engineering plays a key role in the reconstruction of soft-tissue defects. The acellular adipose matrix (AAM) is a promising biomaterial for the construction of engineered adipose tissue. However, AAM lacks sufficient adipoinduction potency because of the abundant loss of matrix-bound adipokines during decellularization.
View Article and Find Full Text PDFSelective capture of radioactive TcO from highly alkaline nuclear waste is highly desirable for environmental remediation and waste disposal. However, the combined features of adsorbents with excellent chemical stability and high capture selectivity for TcO have not yet been achieved. Herein, we report an ultra-stable 3D pyridinium salt-based polymeric network (TMP-TBPM) nanotrap with remarkable radiation, acid and base stability for selective capture of ReO via hydrophobic engineering and steric hindrance, a non-radioactive surrogate of TcO.
View Article and Find Full Text PDFBleached bamboo pulp, as a kind of natural cellulose, has received significant attention in the field of biomass materials due to its advantages of environmental protection and the abundance of raw materials. Low-temperature alkali/urea aqueous system is a green dissolution technology for cellulose, which has promising application prospects in the field of regenerated cellulose materials. However, bleached bamboo pulp, with high viscosity average molecular weight (η) and high crystallinity, is difficult to dissolve in an alkaline urea solvent system, restraining its practical application in the textile field.
View Article and Find Full Text PDFEfficient extraction of radioactive TcO from strong acid/base solutions by porous adsorbents is extremely desirable but remains a great challenge. To overcome the challenge, here we report the first example of an olefin-linked cationic covalent organic framework (COF) named BDBI-TMT with excellent acid, base and radiation stability is synthesized by integrating robust imidazolium salt-based linkers with triazine building blocks. BDBI-TMT shows an ultra-fast adsorption kinetics (equilibrium is reached within 1 min) and an excellent ReO (a non-radioactive surrogate of TcO) capture capacity of 726 mg g, which can be attributed to the abundance of precisely tailored imidazolium salt-based units on the highly accessible pore walls of the ordered pore channels.
View Article and Find Full Text PDFWater is an indispensable strategic resource for biological and social development. The problem of oily wastewater pollution originating from oil spillages, industrial discharge and domestic oil pollution has become an extremely serious international challenge. At present, numerous superwetting materials have been applied to effectively separate oil and water.
View Article and Find Full Text PDFBackground: Skin filler is an option for treating skin aging and wrinkles; however, currently used fillers are limited by poor biocompatibility, rapid degradation, and possible hypersensitivity reactions. Autologous adipose tissue-derived products have been recognized as promising options for skin rejuvenation.
Objectives: This study aimed to develop a novel adipose-derived product for skin filling.
It is well known that charge separation is crucial for efficient photocatalytic solar conversion. Although some covalent-organic frameworks (COFs) exhibit visible-light harvest, the large exciton binding energies reduce their photocatalytic efficiencies. Herein, we developed a novel method to post-treat the olefin-linked COFs with end-capping polycyclic aromatic hydrocarbons (PAHs) for spontaneous charge separation.
View Article and Find Full Text PDFLead ion (Pb) is one of the most common water pollutants. Herein, with bamboo as the raw material, we fabricate a thin-walled hollow ellipsoidal carbon-based adsorbent (CPCs900) containing abundant O-containing groups and carbon defects and having a specific surface area as large as 730.87 m g.
View Article and Find Full Text PDFClinical unpredictability and variability following fat grafting remain non-negligible problems due to the unknown mechanism of grafted fat retention. The role of the extracellular matrix (ECM), which renders cells with structural and biochemical support, has been ignored. This study aimed to clarify the ECM remodeling process, related cellular events, and the spatiotemporal relationship between ECM remodeling and adipocyte survival and adipogenesis after fat grafting.
View Article and Find Full Text PDFJ Nonlinear Sci
September 2022
In this study, we propose an explicit adaptive finite difference method (FDM) for the Cahn-Hilliard (CH) equation which describes the process of phase separation. The CH equation has been successfully utilized to model and simulate diverse field applications such as complex interfacial fluid flows and materials science. To numerically solve the CH equation fast and efficiently, we use the FDM and time-adaptive narrow-band domain.
View Article and Find Full Text PDFExtracellular matrix (ECM)-mimicking biomaterials are considered effective tissue-engineered scaffolds for regenerative medicine because of their biocompatibility, biodegradability, and bioactivity. ECM-mimicking biomaterials preserve natural microstructures and matrix-related bioactive components and undergo continuous matrix remodeling upon transplantation. The interaction between host immune cells and transplanted ECM-mimicking biomaterials has attracted considerable attention in recent years.
View Article and Find Full Text PDFSkin photoaging is one of the most serious public health problems in the 21st century that may lead to thin, saggy, and structurally weakened skin. Adipokine therapy toward skin photoaging is always associated with poor permeability, biologic stability and the short in vivo release duration. Our laboratory previously extracted an extracellular matrix component of adipose tissue by purely physical methods, namely "adipose collagen fragment (ACF)", which holds promise for preventing skin photoaging.
View Article and Find Full Text PDFThe origin of the enormous catalytic power of enzymes has been extensively studied through experimental and computational approaches. Although precise mechanisms are still subject to much debate, enzymes are thought to catalyze reactions by stabilizing transition states (TSs) or destabilizing ground states (GSs). By exploring the catalysis of various types of enzyme-substrate noncovalent interactions, we found that catalysis by TS stabilization and the catalysis by GS destabilization share common features by reducing the free energy barriers (Δ s) of reactions, but are different in attaining the requirement for Δ reduction.
View Article and Find Full Text PDF