Publications by authors named "Yiao Wang"

Antibody-drug conjugates, nanoparticles, and liposomes have been used for anticancer drug delivery. The success of targeted killing of cancer cells relies heavily on the selectivity of the drug delivery systems. In most systems, antibodies or their fragments were used as targeting ligands.

View Article and Find Full Text PDF

Bioorthogonal chemistry has gained widespread use in the study of many biological systems of interest, including protein prenylation. Prenylation is a post-translational modification, in which one or two 15- or 20-carbon isoprenoid chains are transferred onto cysteine residues near the C-terminus of a target protein. The three main enzymes─protein farnesyltransferase (FTase), geranylgeranyl transferase I (GGTase I), and geranylgeranyl transferase II (GGTase II)─that catalyze this process have been shown to tolerate numerous structural modifications in the isoprenoid substrate.

View Article and Find Full Text PDF

The design of imaging agents with a high fluorine content is necessary for overcoming the challenges of low sensitivity in F magnetic resonance imaging (MRI)-based molecular imaging. Chemically self-assembled nanorings (CSANs) provide a strategy to increase the fluorine content through multivalent display. We previously reported an F NMR-based imaging tracer, in which case a CSAN-compatible epidermal growth factor receptor (EGFR)-targeting protein E-dimeric dihydrofolate (E-DD) was bioconjugated to a highly fluorinated peptide.

View Article and Find Full Text PDF

The design of imaging agents with high fluorine content is essential for overcoming the challenges associated with signal detection limits in F MRI-based molecular imaging. In addition to perfluorocarbon and fluorinated polymers, fluorinated peptides offer an additional strategy for creating sequence-defined F magnetic resonance imaging (MRI) imaging agents with a high fluorine signal. Our previously reported unstructured trifluoroacetyllysine-based peptides possessed good physiochemical properties and could be imaged at high magnetic field strength.

View Article and Find Full Text PDF

Inspired by the natural intercellular material-transfer process of trans-endocytosis or trogocytosis, we proposed that targeted farnesylated chemically self-assembled nanorings (f-CSANs) could serve as a biomimetic trogocytosis vehicle for engineering directional cargo transfer between cells, thus allowing cell-cell interactions to be monitored and facilitating cell-cell communications. The membranes of sender cells were stably modified by hydrophobic insertion with the targeted f-CSANs, which were efficiently transferred to receiver cells expressing the appropriate receptors by endocytosis. CSAN-assisted cell-cell cargo transfer (C4T) was demonstrated to be receptor specific and dependent on direct cell-cell interactions, the rate of receptor internalization, and the level of receptor expression.

View Article and Find Full Text PDF

Protein-based conjugates have been extensively utilized in various biotechnological and therapeutic applications. In order to prepare homogeneous conjugates, site-specific modification methods and efficient purification strategies are both critical factors to be considered. The development of general and facile conjugation and purification strategies is therefore highly desirable.

View Article and Find Full Text PDF

The homeostasis of cellular activities is essential for the normal functioning of living organisms. Hence, the ability to regulate the fates of cells is of great significance for both fundamental chemical biology studies and therapeutic development. Despite the notable success of small-molecule drugs that normally act on cellular protein functions, current clinical challenges have highlighted the use of macromolecules to tune cell function for improved therapeutic outcomes.

View Article and Find Full Text PDF

Few therapeutic options have been made available for treating central nervous system tumors, especially upon recurrence. Recurrent medulloblastoma is uniformly lethal with no approved therapies. Recent preclinical studies have shown promising results for eradicating various solid tumors by targeting the overexpressed immune checkpoint molecule, B7-H3.

View Article and Find Full Text PDF

Multicellular biology is dependent on the control of cell-cell interactions. These concepts have begun to be exploited for engineering of cell-based therapies. Herein, we detail the use of a multivalent lipidated scaffold for the rapid and reversible manipulation of cell-cell interactions.

View Article and Find Full Text PDF

Overexpression of the epidermal growth factor receptor (EGFR) on various cancers makes it an important target for cancer immunotherapy. We recently demonstrated that single-chain variable fragment-based bispecific chemically self-assembled nanorings (CSANs) can successfully modify T cell surfaces and function as prosthetic antigen receptors (PARs) allowing selective targeting of tumor antigens while incorporating a dissociation mechanism of the rings. Here, we report the generation of anti-EGFR fibronectin (FN3)-based PARs with high yield, rapid protein production, predicted low immunogenicity, and increased protein stability.

View Article and Find Full Text PDF

Nanosuspensions of drugs are nanosized colloidal dispersions of pure particles. In contrast to conventional nanoparticles, the particles in nanosuspensions feature 100% drug loading. Stiripentol (STP) is an effective drug for severe myoclonic epilepsy of infancy (SMEI); however, because of its low water solubility, high oral doses of STP, up to 50 mg per kg per day in two or three divided doses, must be administered to patients, compromising therapy outcomes.

View Article and Find Full Text PDF

Oral drug delivery is the most preferred route for patients; however, the low solubility of drugs and the resultant poor absorption compromise the benefits of oral administration. On the other hand, for years, the overwhelmingly accepted mechanism for enhanced oral absorption using lipid nanocarriers was based on the process of lipid digestion and drug solubilization in the small intestine. Few reports indicated that other bypass pathways are involved in drug absorption in the gastrointestinal tract (GIT) for oral delivery of nanocarriers.

View Article and Find Full Text PDF