To perform a systematic review on artificial intelligence (AI) performances to detect urinary stones. A PROSPERO-registered (CRD473152) systematic search of Scopus, Web of Science, Embase, and PubMed databases was performed to identify original research articles pertaining to AI stone detection or measurement, using search terms ("automatic" OR "machine learning" OR "convolutional neural network" OR "artificial intelligence" OR "detection" AND "stone volume"). Risk-of-bias (RoB) assessment was performed according to the Cochrane RoB tool, the Joanna Briggs Institute Checklist for nonrandomized studies, and the Checklist for Artificial Intelligence in Medical Imaging (CLAIM).
View Article and Find Full Text PDF