Oncocin is a proline-rich antimicrobial peptide that inhibits protein synthesis by binding to the bacterial ribosome. In this work, the antimicrobial activity of oncocin was improved by systematic peptide mutagenesis and activity evaluation. We found that a pair of cationic substitutions (P4K and L7K/R) improves the activity by 2-4 fold (p<0.
View Article and Find Full Text PDFVancomycin-resistant (VRE) poses a serious threat in hospitals where they densely colonize the intestinal tracts of patients. In vulnerable hosts, these pathogens may translocate to the bloodstream and become lethal. The ability to selectively reduce VRE in the intestinal tracts of patients could potentially prevent many of these translocation events and reduce the spread of the pathogen.
View Article and Find Full Text PDFEntropy (Basel)
September 2018
The time evolution of stochastic reaction networks can be modeled with the chemical master equation of the probability distribution. Alternatively, the numerical problem can be reformulated in terms of probability moment equations. Herein we present a new alternative method for numerically solving the time evolution of stochastic reaction networks.
View Article and Find Full Text PDFDeterministic and stochastic models of chemical reaction kinetics can give starkly different results when the deterministic model exhibits more than one stable solution. For example, in the stochastic Schlögl model, the bimodal stationary probability distribution collapses to a unimodal distribution when the system size increases, even for kinetic constant values that result in two distinct stable solutions in the deterministic Schlögl model. Using zero-information (ZI) closure scheme, an algorithm for solving chemical master equations, we compute stationary probability distributions for varying system sizes of the Schlögl model.
View Article and Find Full Text PDFProtegrin-1 (PG-1) is a cationic arginine-rich antimicrobial peptide. It is widely accepted that PG-1 induces membrane disruption by forming pores that lead to cell death. However, the insertion mechanism for these highly cationic peptides into the hydrophobic membrane environment is still poorly understood at the molecular scale.
View Article and Find Full Text PDFModern large-scale agricultural practices that incorporate high density farming with subtherapeutic antibiotic dosing are considered a major contributor to the rise of antibiotic-resistant bacterial infections of humans with species of Salmonella being a leading agriculture-based bacterial infection. Microcin J25, a potent and highly stable antimicrobial peptide active against Enterobacteriaceae, is a candidate antimicrobial against multiple Salmonella species. Emerging evidence supports the hypothesis that the composition of the microbiota of the gastrointestinal tract prevents a variety of diseases by preventing infectious agents from proliferating.
View Article and Find Full Text PDFMany chemical reaction networks in biological systems present complex oscillatory dynamics. In systems such as regulatory gene networks, cell cycle, and enzymatic processes, the number of molecules involved is often far from the thermodynamic limit. Although stochastic models based on the probabilistic approach of the Chemical Master Equation (CME) have been proposed, studies in the literature have been limited by the challenges of solving the CME and the lack of computational power to perform large-scale stochastic simulations.
View Article and Find Full Text PDFJ Chem Theory Comput
July 2017
Computer simulations were performed to study the antimicrobial peptide microcin J25 (MJ25), a 21-mer peptide with an unusual lasso structure and high activity against Gram-negative bacteria. MJ25 has intracellular targets. The initial step of MJ25 acquisition in bacterial cells is binding to the outer-membrane receptor FhuA.
View Article and Find Full Text PDFAntimicrob Agents Chemother
April 2017
Vancomycin-resistant enterococci, particularly resistant , pose an escalating threat in nosocomial environments because of their innate resistance to many antibiotics, including vancomycin, a treatment of last resort. Many class IIa bacteriocins strongly target these enterococci and may offer a potential alternative for the management of this pathogen. However, 's resistance to these peptides remains relatively uncharacterized.
View Article and Find Full Text PDFDespite the arsenal of technologies employed to control foodborne nontyphoidal Salmonella (NTS), infections have not declined in decades. Poultry is the primary source of NTS outbreaks, as well as the fastest growing meat sector worldwide. With recent FDA rules for phasing-out antibiotics in animal production, pressure is mounting to develop new pathogen reduction strategies.
View Article and Find Full Text PDFAntimicrobial peptides are a promising alternative to traditional antibiotics, but their utility is limited by high production costs and poor bioavailability profiles. Bacterial production and delivery of antimicrobial peptides (AMPs) directly at the site of infection may offer a path for effective therapeutic application. In this study, we have developed a vector that can be used for the production and secretion of seven antimicrobial peptides from both Escherichia coli MC1061 F' and probiotic E.
View Article and Find Full Text PDFPlantaricin EF is a two-peptide bacteriocin that depends on the complementary action of two different peptides (PlnE and PlnF) to function. The structures of the individual peptides have previously been analyzed by nuclear magnetic resonance spectroscopy ( Fimland, N. et al.
View Article and Find Full Text PDFThe emergence of antibiotic resistant microorganisms poses an alarming threat to global health. Antimicrobial peptides (AMPs) are considered a possible effective alternative to conventional antibiotic therapies. An understanding of the mechanism of action of AMPs is needed in order to better control and optimize their bactericidal activity.
View Article and Find Full Text PDFVancomycin-resistant Enterococci infections are a significant clinical problem. One proposed solution is to use probiotics, such as lactic acid bacteria, to produce antimicrobial peptides at the site of infection. Enterocin A, a class 2a bacteriocin, exhibits inhibitory activity against E.
View Article and Find Full Text PDFWe present elements of a stability theory for small, stochastic, nonlinear chemical reaction networks. Steady state probability distributions are computed with zero-information (ZI) closure, a closure algorithm that solves chemical master equations of small arbitrary nonlinear reactions. Stochastic models can be linearized around the steady state with ZI-closure, and the eigenvalues of the Jacobian matrix can be readily computed.
View Article and Find Full Text PDFAntibiotic-resistant enterococcal infections are a major concern in hospitals where patients with compromised immunity are readily infected. Enterococcus faecium bacteria are of particular interest as these pathogens account for over 80% of vancomycin-resistant enterococcal infections. Antimicrobial peptides (AMPs) produced at the site of infection by engineered bacteria may offer a potential alternative to traditional antibiotics for the treatment of resistant bacteria such as E.
View Article and Find Full Text PDFThe plasma protein C3 is a central element in the activation and effector functions of the complement system. A hereditary dysfunction of C3 that prevents complement activation via the alternative pathway (AP) was described previously in a Swedish family, but its genetic cause and molecular consequences have remained elusive. In this study, we provide these missing links by pinpointing the dysfunction to a point mutation in the β-chain of C3 (c.
View Article and Find Full Text PDFWith inexpensive DNA synthesis technologies, we can now construct biological systems by quickly piecing together DNA sequences. Synthetic biology is the promising discipline that focuses on the construction of these new biological systems. Synthetic biology is an engineering discipline, and as such, it can benefit from mathematical modeling.
View Article and Find Full Text PDFThe discovery of antibiotics is one of the most important advances in the history of humankind. For eighty years human life expectancy and standards of living improved greatly thanks to antibiotics. But bacteria have been fighting back, developing resistance to our most potent molecules.
View Article and Find Full Text PDFThe tetracycline operon is an important gene network component, commonly used in synthetic biology applications because of its switch-like character. At the heart of this system is the highly specific interaction of the tet repressor protein (TetR) with its cognate DNA sequence (tetO). TetR binding on tetO practically stops expression of genes downstream of tetO by excluding RNA polymerase from binding the promoter and initiating transcription.
View Article and Find Full Text PDFCurr Opin Chem Eng
August 2014
Stochasticity in the dynamics of small reacting systems requires discrete-probabilistic models of reaction kinetics instead of traditional continuous-deterministic ones. The master probability equation is a complete model of randomly evolving molecular populations. Because of its ambitious character, the master equation remained unsolved for all but the simplest of molecular interaction networks.
View Article and Find Full Text PDFWe designed Lactococcus lactis to detect Enterococcus faecalis. Upon detection, L. lactis produce and secrete antienterococcal peptides.
View Article and Find Full Text PDFProbability reigns in biology, with random molecular events dictating the fate of individual organisms, and propelling populations of species through evolution. In principle, the master probability equation provides the most complete model of probabilistic behavior in biomolecular networks. In practice, master equations describing complex reaction networks have remained unsolved for over 70 years.
View Article and Find Full Text PDFWe present results of tests with recombinant Lactococcus lactis that produce and secrete heterologous antimicrobial peptides with activity against Gram-negative pathogenic Escherichia coli and Salmonella . In an initial screening, the activities of numerous candidate antimicrobial peptides, made by solid state synthesis, were assessed against several indicator pathogenic E. coli and Salmonella strains.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are naturally-occurring molecules that exhibit strong antibiotic properties against numerous infectious bacterial strains. Because of their unique mechanism of action, they have been touted as a potential source for novel antibiotic drugs. We present a summary of computational investigations in our lab aimed at understanding this unique mechanism of action, in particular the development of models that provide a quantitative connection between molecular-level biophysical phenomena and relevant biological effects.
View Article and Find Full Text PDF