Publications by authors named "Yiannis Boutalis"

This paper introduces a novel fusion neural architecture and the use of a novel Lyapunov theory-based algorithm, for the online approximation of the dynamics of nonlinear systems. The proposed neural system, in combination with the proposed update rule of the neural weights, achieves fast convergence of the identification process, ensuring at the same time stability of the error system in the sense of Lyapunov theory. The fusion neural system combines the features that are extracted from two-independent neural streams, a feedforward and a diagonal recurrent one, satisfying different design criteria of the identification task.

View Article and Find Full Text PDF

In this paper, we investigate the indirect adaptive regulation problem of unknown affine in the control nonlinear systems. The proposed approach consists of choosing an appropriate system approximation model and a proper control law, which will regulate the system under the certainty equivalence principle. The main difference from other relevant works of the literature lies in the proposal of a potent approximation model that is bilinear with respect to the tunable parameters.

View Article and Find Full Text PDF

In this paper we analyze the identification problem which consists of choosing an appropriate identification model and adjusting its parameters according to some adaptive law, such that the response of the model to an input signal (or a class of input signals), approximates the response of the real system for the same input. For identification models we use fuzzy-recurrent high order neural networks. High order networks are expansions of the first-order Hopfield and Cohen-Grossberg models that allow higher order interactions between neurons.

View Article and Find Full Text PDF

Due to the rapid development of information technology and the continuously increasing number of available multimedia data, the task of retrieving information based on visual content has become a popular subject of scientific interest. Recent approaches adopt the bag-of-visual-words (BOVW) model to retrieve images in a semantic way. BOVW has shown remarkable performance in content-based image retrieval tasks, exhibiting better retrieval effectiveness over global and local feature (LF) representations.

View Article and Find Full Text PDF

The direct adaptive regulation of unknown nonlinear dynamical systems in Brunovsky form with modeling error effects, is considered in this paper. Since the plant is considered unknown, we propose its approximation by a special form of a Brunovsky type neuro-fuzzy dynamical system (NFDS) assuming also the existence of disturbance expressed as modeling error terms depending on both input and system states plus a not-necessarily-known constant value. The development is combined with a sensitivity analysis of the closed loop and provides a comprehensive and rigorous analysis of the stability properties.

View Article and Find Full Text PDF

The indirect adaptive regulation of unknown nonlinear dynamical systems with multiple inputs and states (MIMS) under the presence of dynamic and parameter uncertainties, is considered in this paper. The method is based on a new neuro-fuzzy dynamical systems description, which uses the fuzzy partitioning of an underlying fuzzy systems outputs and high order neural networks (HONN's) associated with the centers of these partitions. Every high order neural network approximates a group of fuzzy rules associated with each center.

View Article and Find Full Text PDF

The indirect adaptive regulation of unknown nonlinear dynamical systems is considered in this paper. The method is based on a new neuro-fuzzy dynamical system (neuro-FDS) definition, which uses the concept of adaptive fuzzy systems (AFSs) operating in conjunction with high-order neural network functions (FHONNFs). Since the plant is considered unknown, we first propose its approximation by a special form of an FDS and then the fuzzy rules are approximated by appropriate HONNFs.

View Article and Find Full Text PDF