Barnyard grass is one of the most serious rice weeds, often growing near paddy fields and therefore potentially serving as a bridging host for the rice blast fungus. In this study, we isolated three fungal strains from diseased barnyard grass leaves in a rice field. Using a pathogenicity assay, we confirmed that they were capable of causing blast symptoms on barnyard grass and rice leaves to various extents.
View Article and Find Full Text PDFIn eukaryotes, RNA N-methyladenosine (mA) modification and microRNA (miRNA)-mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The mA methyltransferase complex (MTC) and the microprocessor complex both undergo liquid-liquid phase separation to form nuclear membraneless organelles. Although mA methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive.
View Article and Find Full Text PDFPlant cell death is regulated in plant-pathogen interactions. While some aspartic proteases (APs) participate in regulating programmed cell death or defense responses, the defense functions of most APs remain largely unknown. Here, we report on a virulence factor, PlPeL8, which is a pectate lyase found in the hemibiotrophic pathogen Peronophythora litchii.
View Article and Find Full Text PDFThe root-associated microbiota has a close relation to the life activities of plants, and its composition is affected by the rhizospheric environment and plant genotypes. Rice () was domesticated from the ancestor species . Many important agricultural traits and adversity resistance of rice have changed during a long time of natural domestication and artificial selection.
View Article and Find Full Text PDFPreviously we isolated three Fusarium strains (a F. sacchari strain namely GXUF-1, and another two F. commune strains namely GXUF-2 and GXUF-3), and we verified that GXUF-3 was able to cause sugarcane root rot to the chewing cane cultivar Badila.
View Article and Find Full Text PDFCell wall degrading enzymes, including pectate lyases (PeLs), released by plant pathogens, break down protective barriers and/or activate host immunity. The direct interactions between PeLs and plant immune-related proteins remain unclear. We identify two PeLs, PlPeL1 and PlPeL1-like, critical for full virulence of Peronophythora litchii on litchi (Litchi chinensis).
View Article and Find Full Text PDF, the basidiomycetous fungus that causes sugarcane smut and leads to severe losses in sugarcane quantity and quality, undergoes sexual mating to form dikaryotic hyphae capable of invading the host cane. Therefore, suppressing dikaryotic hyphae formation would potentially be an effective way to prevent host infection by the smut fungus, and the following disease symptom developments. The phytohormone methyl jasmonate (MeJA) has been shown to induce plant defenses against insects and microbial pathogens.
View Article and Find Full Text PDFBackground: Envelope stress responses (ESRs) are critical for adaptive resistance of Gram-negative bacteria to envelope-targeting antimicrobial agents. However, ESRs are poorly defined in a large number of well-known plant and human pathogens. Dickeya oryzae can withstand a high level of self-produced envelope-targeting antimicrobial agents zeamines through a zeamine-stimulated RND efflux pump DesABC.
View Article and Find Full Text PDFIntroduction: Litchi is an economically important fruit in subtropical countries, but pericarp browning can limit its shelf life outside of controlled storage conditions. Effective and sustainable biological control strategies are needed to protect fruit against postharvest browning.
Results And Discussion: In this study, we show that the four bacterial strains HS10, LI24 and PP19, and SI17 can delay fruit browning in both laboratory trials (LTs) and field plus laboratory trials (FLTs).
To explore the causal pathogen and the correlated rhizosphere soil microecology of sugarcane root rot, we sampled the sugarcane root materials displaying different disease severity, and the corresponding rhizosphere soil, for systematic root phenotype and microbial population analyses. We found that with increased level of disease severity reflected by above-ground parts of sugarcane, the total root length, total root surface area and total volume were significantly reduced, accompanied with changes in the microbial population diversity and structure in rhizosphere soil. Fungal community richness was significantly lower in the rhizosphere soil samples from mildly diseased plant than that from either healthy plant, or severely diseased plant.
View Article and Find Full Text PDFK-Ras is a well-studied oncogene, and its mutation is frequently found in epithelial cancers like pancreas, lung, and colorectal cancers. Cancer cells harboring K-Ras mutations are difficult to treat due to the drug resistance and metastasis properties. Cancer stem cells (CSCs) are believed the major cause of chemotherapeutic resistance and responsible for tumor recurrence and metastasis.
View Article and Find Full Text PDFMorphogenesis is a strictly regulated efficient system in eukaryotes for adapting to environmental changes. However, the morphogenesis regulatory mechanism in smut fungi is not clear. This study reports a relationship between MAP kinase Hog1 and cAMP-dependent protein kinase A catalytic subunit (Adr1) for the morphological regulation in the sugarcane pathogen .
View Article and Find Full Text PDFMany prokaryotes and eukaryotes utilize two-component signaling pathways to counter environmental stress and regulate virulence genes associated with infection. In this study, we identified and characterized a conserved histidine kinase (SsSln1), which is the sensor of the two-component system of Sln1-Ypd1-Ssk1 in . null mutant exhibited enhanced mating and virulence capabilities in , which is opposite to what has been reported in .
View Article and Find Full Text PDFThe biotrophic basidiomycetous fungus causing smut disease in sugarcane is characterized by a life cycle composed of a yeast-like nonpathogenic haploid basidiosporial stage outside the plant and filamentous pathogenic dikaryotic hyphae within the plant. Under field conditions, dikaryotic hyphae are formed after mating of two opposite mating-type strains. However, the mechanisms underlying genetic regulation of filamentation and its association with pathogenicity and development of teliospores are unclear.
View Article and Find Full Text PDFThe MAP kinase high osmolarity glycerol 1 (Hog1) plays a central role in responding to external oxidative stress in budding yeast Saccchromyces cerevisiae. However, the downstream responsive elements regulated by Hog1 remain poorly understood. In this study, we report that a Sporisorium scitamineum orthologue of Hog1, named as SsHog1, induced transcriptional expression of a putative cytochrome P450 oxidoreductase encoding gene SsCPR1, to antagonize oxidative stress.
View Article and Find Full Text PDFAs an evolutionarily conserved pathway, mitogen-activated protein kinase (MAPK) cascades function as the key signal transducers that convey information by protein phosphorylation. Here we identified as one of 14 predicted MAPKs encoding genes in the plant pathogenic oomycete . is conserved in and species.
View Article and Find Full Text PDFLitchi downy blight, caused by the phytopathogenic oomycete Peronophythora litchii, results in tremendous economic loss in litchi production every year. To successfully colonize the host cell, Phytophthora species secret hundreds of RXLR effectors that interfere with plant immunity and facilitate the infection process. Previous work has already predicted 245 candidate RXLR effector-encoding genes in P.
View Article and Find Full Text PDFFront Microbiol
September 2019
The sugarcane smut fungus is bipolar and produces sporidia of two different mating types. During infection, haploid cells of opposite mating types can fuse to form dikaryotic hyphae that can colonize plant tissue. Mating and filamentation are therefore essential for pathogenesis.
View Article and Find Full Text PDFMagnaporthe oryzae causes blast disease, which is one of the most devastating infections in rice and several important cereal crops. Magnaporthe oryzae needs to coordinate gene regulation, morphological changes, nutrient acquisition and host evasion in order to invade and proliferate within the plant tissues. Thus far, the molecular mechanisms underlying the regulation of invasive growth in planta have remained largely unknown.
View Article and Find Full Text PDFThe basidiomycetous fungus causes a serious sugarcane smut disease in major sugarcane growing areas. Sexual mating is essential for infection to the host; however, its underlying molecular mechanism has not been fully studied. In this study, we identified a conserved farnesyltransferase (FTase) β subunit Ram1 in .
View Article and Find Full Text PDFGray mold caused by Botrytis cinerea is a major postharvest disease of table grapes that leads to enormous economic losses during storage and transportation. The objective of this study was to evaluate the effectiveness of fulvic acid on controlling gray mold of table grapes and explore its mechanism of action. The results showed that fulvic acid application significantly reduced downy blight severity in table grapes without exhibiting any antifungal activity in vitro.
View Article and Find Full Text PDFTo develop a new strategy that controls vascular pathogen infections in economic crops, we examined a possible enhancer of the vascular activity of XYLOGEN PROTEIN 1 promoter (Px). This protein is specifically expressed in the vascular tissues of and plays an important role in xylem development. Although Px is predicted as vascular-specific, its activity is hard to detect and highly susceptible to plant and environmental conditions.
View Article and Find Full Text PDF